加氢脱氧
双功能
催化作用
木质素
化学
有机化学
选择性
作者
Tao Yin,Yang Luo,Arvind Singh Chauhan,Riyang Shu,Zhipeng Tian,Chao Wang,Ying Chen,Navneet Kumar Gupta
标识
DOI:10.1002/cphc.202400505
摘要
Abstract In the catalytic transformation of bio‐oil into liquid fuels having alkanes via hydrodeoxygenation (HDO), the acid and metal sites in the catalyst are pivotal for promoting the HDO of lignin‐derived phenolic compounds. This study introduces a novel bifunctional catalyst comprising phosphomolybdenum‐vanadium heteropolyacids (H 4 PMo 11 VO 40 ) coupled with Ni/C. The HDO reaction of the model compound guaiacol was carried out under reaction conditions of 230 °C, revealing the superior performance of H 4 PMo 11 VO 40 with Ni/C catalysts compared to the conventional acids, even at low dosage. The Keggin structure of H 4 PMo 11 VO 40 provided a solid catalyst with strong acidic and redox properties, alongside advantages such as ease of synthesis, cost‐effectiveness, and tunable acid and redox properties at the molecular level. Characterization of Ni/C and the prepared acid demonstrated favorable pore structure with a mesopore volume of 0.281 cm 3 /g and an average pore size of 3.404 nm, facilitating uniform distribution and catalytic activity of Ni‐metal. Incorporating acid enhances the acidic sites, fostering synergistic interactions between metal and acidic sites within the catalyst, thereby significantly enhancing HDO performance. Guaiacol conversion at 230 °C reached 100 %, with a cyclohexane selectivity of 89.3 %. This study offers a promising avenue for the conversion and upgrading of lignin‐derived phenolic compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI