Cellulose binary coatings with spherical envelope structure via structure rearrangement in ball milling for integrated radiative cooling-electricity generation

辐射冷却 材料科学 热电效应 辐射传输 被动冷却 光电子学 热电冷却 复合材料 可再生能源 工程物理 传热 光学 热力学 机械 物理 工程类 电气工程
作者
Chenyang Cai,Xiaodan Wu,Yi Chen,Fulin Cheng,Zechang Wei
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:277: 134248-134248 被引量:1
标识
DOI:10.1016/j.ijbiomac.2024.134248
摘要

Passive daytime radiative cooling is a zero-energy consumption cooling technology, which can dissipate heat to outer space via infrared radiation. Recently, coupling radiative cooling technology and thermoelectric devices to generate electricity has attracted much attention. However, existing radiative cooling integrated thermoelectric devices still suffer from low-temperature gradient and output voltage. Here, based on the Mie scattering and internal reflection enhancing principle, an impact-inducing geometry reconstruction approach was proposed to fabricate hierarchical nanostructured cellulosic coatings with good daytime cooling performance to achieve stable electricity generation function, which can be realized by using a scalable and facile wet ball milling technology. Guided by the theoretical simulations of the finite difference time domain method (FDTD), the cellulose and TiO2 nanoparticles can assemble into spherical envelope structured coatings drying by the shear, impact, and friction interaction in the ball milling process, dramatically enhancing the Mie scattering and internal reflection of coatings. The cellulosic coatings exhibit sunlight reflectivity of 0.962 and infrared emissivity of 0.94, resulting in a daytime radiative cooling efficiency of 5.9 °C under direct sunlight. Energy Plus stimulation demonstrated 35 % cooling energy and 468.9 kWh of cooling energy can be saved annually in China. Meanwhile, this cellulosic coating-based thermoelectric device can deliver a high voltage output of 150 mV under 1 Sun due to the strong bonding and high-temperature gradient formation (30 °C), which is higher than previous reports. This study will facilitate the development of sustainable power generation device for the goal of green future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助qiao采纳,获得10
1秒前
1秒前
孟孟发布了新的文献求助30
1秒前
小狗不是抠脚兵完成签到 ,获得积分10
2秒前
小马甲应助Captain采纳,获得10
2秒前
2秒前
丹妮发布了新的文献求助10
2秒前
zy完成签到,获得积分10
3秒前
4秒前
dadadasds发布了新的文献求助10
4秒前
田様应助yyh12138采纳,获得10
4秒前
阿然要努力关注了科研通微信公众号
4秒前
5秒前
baolong发布了新的文献求助10
5秒前
丘比特应助HSD采纳,获得10
5秒前
NexusExplorer应助阜睿采纳,获得10
5秒前
NexusExplorer应助Jeremy采纳,获得10
5秒前
6秒前
无昵称发布了新的文献求助10
6秒前
guoguo完成签到,获得积分10
7秒前
猫猫侠发布了新的文献求助10
8秒前
8秒前
vaco完成签到,获得积分20
8秒前
Owen应助Hohowinnie采纳,获得10
9秒前
9秒前
maxhuang发布了新的文献求助10
9秒前
10秒前
guoguo发布了新的文献求助10
10秒前
风驻云停发布了新的文献求助10
10秒前
刘桑桑完成签到,获得积分10
10秒前
哈哈哈哈发布了新的文献求助20
10秒前
11秒前
杨志坚完成签到,获得积分10
11秒前
11秒前
个性的南珍完成签到 ,获得积分10
11秒前
11秒前
singvu6688完成签到,获得积分10
12秒前
12秒前
思源应助服部平次采纳,获得10
12秒前
颜凡桃发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144560
求助须知:如何正确求助?哪些是违规求助? 2796059
关于积分的说明 7817719
捐赠科研通 2452134
什么是DOI,文献DOI怎么找? 1304892
科研通“疑难数据库(出版商)”最低求助积分说明 627331
版权声明 601432