Cellulose binary coatings with spherical envelope structure via structure rearrangement in ball milling for integrated radiative cooling-electricity generation

辐射冷却 材料科学 热电效应 辐射传输 被动冷却 光电子学 热电冷却 复合材料 可再生能源 工程物理 传热 光学 热力学 机械 物理 工程类 电气工程
作者
Chenyang Cai,Xiaodan Wu,Yi Chen,Fulin Cheng,Zechang Wei
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:277: 134248-134248 被引量:1
标识
DOI:10.1016/j.ijbiomac.2024.134248
摘要

Passive daytime radiative cooling is a zero-energy consumption cooling technology, which can dissipate heat to outer space via infrared radiation. Recently, coupling radiative cooling technology and thermoelectric devices to generate electricity has attracted much attention. However, existing radiative cooling integrated thermoelectric devices still suffer from low-temperature gradient and output voltage. Here, based on the Mie scattering and internal reflection enhancing principle, an impact-inducing geometry reconstruction approach was proposed to fabricate hierarchical nanostructured cellulosic coatings with good daytime cooling performance to achieve stable electricity generation function, which can be realized by using a scalable and facile wet ball milling technology. Guided by the theoretical simulations of the finite difference time domain method (FDTD), the cellulose and TiO2 nanoparticles can assemble into spherical envelope structured coatings drying by the shear, impact, and friction interaction in the ball milling process, dramatically enhancing the Mie scattering and internal reflection of coatings. The cellulosic coatings exhibit sunlight reflectivity of 0.962 and infrared emissivity of 0.94, resulting in a daytime radiative cooling efficiency of 5.9 °C under direct sunlight. Energy Plus stimulation demonstrated 35 % cooling energy and 468.9 kWh of cooling energy can be saved annually in China. Meanwhile, this cellulosic coating-based thermoelectric device can deliver a high voltage output of 150 mV under 1 Sun due to the strong bonding and high-temperature gradient formation (30 °C), which is higher than previous reports. This study will facilitate the development of sustainable power generation device for the goal of green future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
刚刚
Hello应助潇洒的青采纳,获得10
刚刚
刚刚
共享精神应助长孙归尘采纳,获得10
刚刚
1秒前
Evan123发布了新的文献求助10
1秒前
2秒前
xctdyl1992发布了新的文献求助10
2秒前
2秒前
Su完成签到,获得积分10
2秒前
俗丨完成签到,获得积分10
3秒前
科研通AI5应助海底落日采纳,获得30
3秒前
3秒前
CodeCraft应助纯真忆安采纳,获得10
3秒前
顺顺发布了新的文献求助10
3秒前
3秒前
4秒前
nan完成签到,获得积分10
4秒前
4秒前
自信的叫兽完成签到,获得积分10
4秒前
淡然老太完成签到,获得积分10
5秒前
5秒前
哟哟哟完成签到,获得积分10
6秒前
思源应助背后的机器猫采纳,获得10
6秒前
惠惠发布了新的文献求助10
6秒前
AFEUWOS01完成签到,获得积分20
7秒前
冷傲的樱桃完成签到,获得积分10
7秒前
fighting发布了新的文献求助10
7秒前
zxw发布了新的文献求助10
8秒前
赵赵赵完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
唐人雄完成签到,获得积分10
9秒前
xctdyl1992完成签到,获得积分20
9秒前
9秒前
丰知然应助周凡淇采纳,获得10
9秒前
丰知然应助周凡淇采纳,获得10
9秒前
科研小白花完成签到,获得积分20
10秒前
纯真忆安完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794