Light element (B, N) co-doped graphitic films on copper as highly robust current collectors for anode-free Li metal battery applications

阳极 材料科学 兴奋剂 电池(电) 金属 集电器 光电子学 化学工程 冶金 电极 化学 功率(物理) 物理 物理化学 量子力学 工程类
作者
Rhushikesh Godbole,Shweta Hiwase,M. M. Hossain,Supriya Kadam,Minal Wable,Sunit Rane,S. Mondal .,Bidisa Das,Abhik Banerjee,Satishchandra Ogale
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:11 (3)
标识
DOI:10.1063/5.0208785
摘要

We have examined the case of light atom (B, N) doped and co-doped graphitic films grown on copper for the anode-free Li Metal Battery (AFLMB) application. For nitrogen doping, the depositions were carried out by laser ablating pure graphite (Gr) in the presence of Nitrogen (N2) or Ammonia (NH3). In another interesting case, 5 wt. % Boron nitride (BN) was added into the graphite target itself to obtain BN-doped graphite films. It was found that the growth condition mediated film constitution and properties significantly influence the Coulombic efficiency and cycling stability of the cells when tested for AFLMB. The cycle life demonstrated by the cells of pure graphitic film (Gr) was only about 110 cycles, while the N-doped graphite films obtained using N2 gas (N2–Gr) exhibited stability up to about 300 cycles. Interestingly the N-doped films obtained using NH3 gas (NH3–Gr) exhibited a stability of 715 cycles and B, N co-doped graphite (BN–Gr) film resulted in an even longer cycle life of 795 cycles. Density functional theory calculations were also performed to deeply understand the interaction and binding energy of Lithium within the undoped and doped graphene sheets modeled through the addition of light elements. It was found that the binding of Li is stronger in the (B, N) co-doped graphene as compared to the N-doped graphene and undoped graphene but much weaker than the B-doped graphene. Therefore, an improved lateral Li diffusion in the (B, N) co-doped graphene is observed where the Li binding strength is optimum resulting in better cycling stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanghq13发布了新的文献求助10
刚刚
qinqiny完成签到 ,获得积分10
刚刚
lucky完成签到,获得积分10
1秒前
cat完成签到 ,获得积分10
1秒前
始终完成签到,获得积分10
2秒前
肌肉干细胞完成签到,获得积分10
2秒前
汉堡包应助eugene采纳,获得10
3秒前
鹿静枫完成签到,获得积分10
3秒前
3秒前
ZH完成签到,获得积分10
4秒前
4秒前
从容芮应助llg采纳,获得10
5秒前
余一台完成签到 ,获得积分10
5秒前
温乐松完成签到,获得积分10
5秒前
我是老大应助蟹黄小笼包采纳,获得10
5秒前
天天快乐应助调皮老头采纳,获得10
5秒前
6秒前
木林森完成签到,获得积分10
6秒前
FireNow完成签到 ,获得积分10
6秒前
Lucas应助调皮的蓝天采纳,获得10
7秒前
加油干完成签到 ,获得积分10
7秒前
sui关注了科研通微信公众号
9秒前
不懈奋进应助豆豆采纳,获得30
10秒前
领导范儿应助yyd采纳,获得10
11秒前
共享精神应助tearun采纳,获得10
12秒前
鹊谣完成签到,获得积分10
13秒前
13秒前
ygr完成签到,获得积分10
13秒前
卿欣完成签到 ,获得积分10
13秒前
14秒前
14秒前
科研通AI2S应助青栞采纳,获得10
15秒前
16秒前
朴素的清发布了新的文献求助10
16秒前
changhe完成签到,获得积分10
16秒前
eugene发布了新的文献求助10
18秒前
丽丽完成签到,获得积分10
18秒前
18秒前
SLY完成签到 ,获得积分10
18秒前
azhu发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079267
求助须知:如何正确求助?哪些是违规求助? 2731896
关于积分的说明 7521337
捐赠科研通 2380638
什么是DOI,文献DOI怎么找? 1262413
科研通“疑难数据库(出版商)”最低求助积分说明 611928
版权声明 597414