材料科学
压电
位错
钛酸钡
成核
衍射
执行机构
铁电性
压电系数
凝聚态物理
陶瓷
工程物理
光电子学
复合材料
电介质
光学
热力学
电气工程
物理
工程类
作者
Fangping Zhuo,Bo Wang,Long Cheng,Edoardo Zatterin,Tianshu Jiang,Fan Ni,Patrick Breckner,Yan Li,Nicolas Guiblin,Daniel Isaia,Nengneng Luo,Lovro Fulanović,Leopoldo Molina‐Luna,Brahim Dkhil,Long‐Qing Chen,Jürgen Rödel
标识
DOI:10.1002/adma.202413713
摘要
Abstract Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient ( d 33 *) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100}<100> dislocations is proposed. This dislocation engineering yields an intrinsic lock‐in steady–state electrostrain of 0.69% at a low field of 10 kV cm −1 without external stress and an output strain energy density of 5.24 J cm −3 in single‐crystal BaTiO 3 , outperforming the benchmark piezoceramics and relaxor ferroelectric single‐crystals. Additionally, applying a compression stress of 6 MPa fully unlocks electrostrains exceeding 1%, yielding a remarkable d 33 * value over 10 000 pm V −1 and achieving a record‐high strain energy density of 11.67 J cm −3 . Optical and transmission electron microscopy, paired with laboratory and synchrotron X‐ray diffraction, is employed to rationalize the observed electrostrain. Phase‐field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findings present an effective and sustainable strategy for developing high‐performance, lead‐free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI