Effective pre-stress identification in steel strand based on ultrasonic guided wave and 1-dimensional convolutional neural network

卷积神经网络 稳健性(进化) 支持向量机 时域 应力场 压力(语言学) 计算机科学 算法 模式识别(心理学) 人工智能 工程类 有限元法 计算机视觉 语言学 哲学 生物化学 化学 结构工程 基因
作者
Longguan Zhang,Junfeng Jia,Yu‐Lei Bai,Xiuli Du,Binli Guo,He Guo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241263955
摘要

The accurate assessment of the effective pre-stress in steel strands is a challenging task, and ultrasonic guided wave (UGW) technique has shown certain application prospects in this field. However, the existing UGW-based approaches require manual parameter extraction from signals in time domain or frequency domain, which is a cumbersome and time-consuming process, and pre-stress identification based on individual parameters may not be reasonable. This study proposes a framework for identifying effective pre-stress in steel strands based on UGW and one-dimensional convolutional neural network (1D-CNN), which does not require any parameter extraction operation and achieves high identification accuracy. The output features of various convolutional layers in 1D-CNN were downscaled and visualized, and the prediction results of 1D-CNN were compared with those of a support vector regression (SVR) model. Results show that with the deepening of the network, the correlation between output features of the convolutional layers and pre-stress values increases significantly, indicating that the 1D-CNN model is able to automatically extract features related to the variation of pre-stress. The pre-stress prediction accuracy using 1D-CNN is significantly higher than that using SVR, and the prediction error is within 3%. The proposed 1D-CNN model exhibits excellent noise-robustness, with the prediction error remaining within 10% even at the SNR level of −5 dB. Even after removing half of conditions in the training set, the proposed 1D-CNN model is still able to achieve accurate identification of effective pre-stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
难过梦竹发布了新的文献求助60
2秒前
liu完成签到,获得积分10
3秒前
小马甲应助舒心的雪卉采纳,获得10
4秒前
5秒前
英俊的铭应助唧唧采纳,获得10
5秒前
张丹111完成签到,获得积分10
5秒前
figure完成签到 ,获得积分10
6秒前
6秒前
yx20148关注了科研通微信公众号
6秒前
小郭大夫完成签到,获得积分10
9秒前
一种信仰完成签到,获得积分10
10秒前
Hm完成签到,获得积分10
11秒前
12秒前
勤劳的小蜜蜂完成签到 ,获得积分10
12秒前
fanlin完成签到,获得积分0
12秒前
13秒前
16秒前
16秒前
KD发布了新的文献求助10
18秒前
医隐完成签到,获得积分10
18秒前
yudandan@CJLU发布了新的文献求助10
20秒前
21秒前
高求完成签到,获得积分10
21秒前
21秒前
yx20148发布了新的文献求助10
22秒前
一口橙汁完成签到,获得积分10
22秒前
傲娇皮皮虾完成签到 ,获得积分10
24秒前
充电宝应助PZD采纳,获得10
25秒前
萧暖发布了新的文献求助10
26秒前
27秒前
医隐发布了新的文献求助20
27秒前
应飞飞完成签到,获得积分10
29秒前
科目三应助paul采纳,获得10
30秒前
上官若男应助hyper_zhou采纳,获得10
31秒前
柯一一应助小M采纳,获得10
31秒前
浅夏完成签到,获得积分20
32秒前
王DD发布了新的文献求助10
34秒前
34秒前
赘婿应助留胡子的小虾米采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952993
求助须知:如何正确求助?哪些是违规求助? 3498423
关于积分的说明 11091766
捐赠科研通 3229049
什么是DOI,文献DOI怎么找? 1785199
邀请新用户注册赠送积分活动 869228
科研通“疑难数据库(出版商)”最低求助积分说明 801411