Effective pre-stress identification in steel strand based on ultrasonic guided wave and 1-dimensional convolutional neural network

卷积神经网络 稳健性(进化) 支持向量机 时域 应力场 压力(语言学) 计算机科学 算法 模式识别(心理学) 人工智能 工程类 有限元法 计算机视觉 语言学 哲学 生物化学 化学 结构工程 基因
作者
Longguan Zhang,Junfeng Jia,Yu‐Lei Bai,Xiuli Du,Binli Guo,He Guo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241263955
摘要

The accurate assessment of the effective pre-stress in steel strands is a challenging task, and ultrasonic guided wave (UGW) technique has shown certain application prospects in this field. However, the existing UGW-based approaches require manual parameter extraction from signals in time domain or frequency domain, which is a cumbersome and time-consuming process, and pre-stress identification based on individual parameters may not be reasonable. This study proposes a framework for identifying effective pre-stress in steel strands based on UGW and one-dimensional convolutional neural network (1D-CNN), which does not require any parameter extraction operation and achieves high identification accuracy. The output features of various convolutional layers in 1D-CNN were downscaled and visualized, and the prediction results of 1D-CNN were compared with those of a support vector regression (SVR) model. Results show that with the deepening of the network, the correlation between output features of the convolutional layers and pre-stress values increases significantly, indicating that the 1D-CNN model is able to automatically extract features related to the variation of pre-stress. The pre-stress prediction accuracy using 1D-CNN is significantly higher than that using SVR, and the prediction error is within 3%. The proposed 1D-CNN model exhibits excellent noise-robustness, with the prediction error remaining within 10% even at the SNR level of −5 dB. Even after removing half of conditions in the training set, the proposed 1D-CNN model is still able to achieve accurate identification of effective pre-stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎不二完成签到,获得积分10
1秒前
1秒前
liian7发布了新的文献求助200
2秒前
March完成签到,获得积分10
3秒前
5秒前
筱溪完成签到 ,获得积分10
5秒前
6秒前
kangsynat完成签到 ,获得积分10
7秒前
星辰发布了新的文献求助10
7秒前
科研通AI2S应助零花钱采纳,获得10
8秒前
研友_VZG7GZ应助研友_nPoXoL采纳,获得10
8秒前
kxy完成签到,获得积分10
10秒前
李健的小迷弟应助ma采纳,获得10
10秒前
完美世界应助lan采纳,获得10
10秒前
科研通AI2S应助lan采纳,获得10
10秒前
Barton应助lan采纳,获得10
10秒前
pluto应助lan采纳,获得10
10秒前
Lvhao应助坦率迎海zzh采纳,获得10
15秒前
一二三四五完成签到,获得积分10
16秒前
18秒前
领导范儿应助YJY采纳,获得10
19秒前
22秒前
22秒前
kll完成签到,获得积分10
25秒前
fr0zen完成签到,获得积分10
25秒前
Akim应助fifteen采纳,获得10
25秒前
26秒前
喵喵发布了新的文献求助10
27秒前
Orange应助书羽采纳,获得10
28秒前
冷酷的慕蕊完成签到 ,获得积分10
28秒前
qin希望应助烈酒一醉方休采纳,获得10
28秒前
agicmoon完成签到,获得积分10
30秒前
Lili发布了新的文献求助50
30秒前
31秒前
32秒前
33秒前
科研通AI2S应助halona采纳,获得10
34秒前
34秒前
情怀应助he采纳,获得10
35秒前
阵痛完成签到 ,获得积分10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160952
求助须知:如何正确求助?哪些是违规求助? 2812175
关于积分的说明 7894698
捐赠科研通 2471057
什么是DOI,文献DOI怎么找? 1315853
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068