Application of Multimodal Reconstruction Technology and 3D Printing Technology in MVD Surgery

医学 神经血管束 手术计划 成像技术 新兴技术 磁共振成像 医学物理学 外科 放射科 计算机科学 人工智能
作者
Jinkai Liu,Yifei Zhang,Xiaowei Tao,Bing Wang
出处
期刊:Journal of Craniofacial Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/scs.0000000000010612
摘要

Microvascular decompression (MVD) plays a pivotal role in the treatment of cranial neurovascular compression syndromes, yet the safety and precision of the surgery remain a focus of clinical attention. This article delves into the application of multimodal reconstruction and 3D printing technologies in MVD surgeries, evaluating their effectiveness in preoperative planning. Multimodal reconstruction, by integrating various imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT), provides high-resolution anatomical information, offering comprehensive data support for preoperative planning and intraoperative navigation. Complementing this, 3D printing technology presents patients’ anatomical structures as individualized physical models, enabling surgeons to fabricate corresponding skin templates for surgical needs, offering intuitive and practical references. Case studies presented in this article demonstrate the application and efficacy of these technologies in actual MVD surgeries. The results suggest that multimodal reconstruction and 3D printing technologies aid surgical teams in better understanding patients’ anatomical structures during preoperative planning, enhancing surgical accuracy, reducing operative time, and shortening hospital stays. Despite notable advancements in MVD surgeries, challenges such as data accuracy, technological complexity, and cost persist. Future research should aim to address these issues, further optimizing the technologies and promoting their widespread application in neurosurgical procedures. Through in-depth investigation and understanding of these advanced technologies, we hope to pave new paths for improving surgical outcomes and patients’ quality of life.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Elvira应助Emanon采纳,获得10
1秒前
1秒前
天天快乐应助bear熊采纳,获得10
1秒前
DODO完成签到,获得积分10
3秒前
3秒前
Vicky发布了新的文献求助10
4秒前
5秒前
GYPP发布了新的文献求助10
7秒前
fjhsg25发布了新的文献求助10
7秒前
7秒前
胡八一发布了新的文献求助10
9秒前
研友_LOK59L发布了新的文献求助10
10秒前
大模型应助妮妮采纳,获得10
10秒前
11秒前
Vicky完成签到,获得积分10
12秒前
爆米花应助皮皮皮咩采纳,获得30
12秒前
yimoyafan关注了科研通微信公众号
12秒前
14秒前
bkagyin应助raorao采纳,获得10
14秒前
SciGPT应助煤炭不甜采纳,获得10
15秒前
15秒前
自觉向雪完成签到,获得积分10
16秒前
16秒前
英俊的铭应助胡八一采纳,获得10
16秒前
17秒前
17秒前
善学以致用应助榴莲信徒采纳,获得10
17秒前
bear熊发布了新的文献求助10
19秒前
胡梅13发布了新的文献求助10
20秒前
自觉向雪发布了新的文献求助10
22秒前
22秒前
yanmh完成签到,获得积分10
22秒前
dddsss发布了新的文献求助30
23秒前
23秒前
nengzou完成签到 ,获得积分10
25秒前
25秒前
25秒前
fjhsg25完成签到,获得积分20
26秒前
捣蛋发布了新的文献求助30
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387472
求助须知:如何正确求助?哪些是违规求助? 3000244
关于积分的说明 8790029
捐赠科研通 2686174
什么是DOI,文献DOI怎么找? 1471475
科研通“疑难数据库(出版商)”最低求助积分说明 680307
邀请新用户注册赠送积分活动 673072