Development of ANN prediction model for estimation of heat transfer utilizing rectangular-toothed v-cut twisted tape

努塞尔数 雷诺数 传热 湍流 反向 机械 材料科学 人工智能 热力学 计算机科学 数学 物理 几何学
作者
Sanjay Kumar Singh,Ruchin Kacker,Satyam Shivam Gautam,Santosh Kumar Tamang
标识
DOI:10.1177/09544089241272853
摘要

This work explores the heat transfer performance and friction characteristics of toothed v-cut twisted tapes, while employing an artificial neural network (ANN) as a predictive model. The novelty of this study lies in the innovative use of toothed v-cut twisted tapes to enhance heat transfer performance, coupled with the application of ANN for precise prediction and optimization. Focusing on a specific geometric range by adjusting the depth ratio of rectangular teeth and the width-to-depth ratio of the v-cut, the study investigates turbulent flows with Reynolds numbers spanning from 6000 to 13,000, mirroring real-world applications. The investigations unveil that the introduction of teeth to the v-cut generates a secondary vortex flow, contributing significantly to improved heat transfer by enhancing the Nusselt number ( Nu) and mitigating the reduction in heat transfer rate with increasing depth of cut at higher Reynolds numbers ( Re). The nuanced behavior of the friction factor is revealed, showcasing its inverse proportionality to Re and e/ c, and direct proportionality to b/ c, offering valuable practical insights. Remarkably, the analysis of heat transfer rate variations underscores the ANN model's predictive accuracy. Key findings include the most substantial increase in heat transfer rate for b/ c = 0.67 and e/ c = 0.14, with the ANN model predictions closely aligning with these results. The ANN model, trained on extensive datasets derived from experiments, emerges as a robust predictive tool, demonstrating mean relative errors constrained to less than 3.3% for Nusselt numbers and 0.08% for friction factors. Validation against previously unseen datasets further substantiates its efficacy, with an average percentage error of 3.32% for friction and 0.96% for Nusselt numbers. These results, along with the 97% and 99% accuracy for friction and Nusselt numbers, respectively, position the ANN model as a reliable tool for precision in predicting and optimizing heat transfer dynamics across varied engineering scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rookie_b0发布了新的文献求助10
刚刚
邓代容完成签到 ,获得积分10
1秒前
可爱的函函应助南逸然采纳,获得10
1秒前
HiK完成签到,获得积分10
1秒前
gaos发布了新的文献求助10
1秒前
2秒前
外向从灵发布了新的文献求助10
2秒前
2秒前
萌道完成签到,获得积分20
3秒前
thanhmanhp完成签到,获得积分10
3秒前
doudou发布了新的文献求助10
3秒前
3秒前
有风完成签到,获得积分10
3秒前
tk完成签到 ,获得积分10
4秒前
4秒前
大模型应助蜡笔采纳,获得30
4秒前
liu发布了新的文献求助10
4秒前
完美世界应助咳咳采纳,获得10
5秒前
5秒前
哒哒完成签到,获得积分10
5秒前
李健春完成签到 ,获得积分10
5秒前
ding应助小文采纳,获得10
5秒前
5秒前
6秒前
99完成签到,获得积分10
6秒前
隐形曼青应助迅速的夏兰采纳,获得20
6秒前
Muse完成签到 ,获得积分10
7秒前
圈圈发布了新的文献求助10
7秒前
打打应助时尚的蚂蚁采纳,获得10
8秒前
贾文斌完成签到,获得积分10
8秒前
chinning发布了新的文献求助10
8秒前
完美世界应助wangn采纳,获得10
9秒前
Mid完成签到,获得积分20
9秒前
共享精神应助Morgenstern_ZH采纳,获得10
9秒前
9秒前
9秒前
搞怪画笔完成签到 ,获得积分10
9秒前
皇城有饭局完成签到,获得积分10
9秒前
lvanlvan完成签到,获得积分10
9秒前
哲999发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759