Development of ANN prediction model for estimation of heat transfer utilizing rectangular-toothed v-cut twisted tape

努塞尔数 雷诺数 传热 湍流 反向 机械 材料科学 人工智能 热力学 计算机科学 数学 物理 几何学
作者
Sanjay Kumar Singh,Ruchin Kacker,Satyam Shivam Gautam,Santosh Kumar Tamang
标识
DOI:10.1177/09544089241272853
摘要

This work explores the heat transfer performance and friction characteristics of toothed v-cut twisted tapes, while employing an artificial neural network (ANN) as a predictive model. The novelty of this study lies in the innovative use of toothed v-cut twisted tapes to enhance heat transfer performance, coupled with the application of ANN for precise prediction and optimization. Focusing on a specific geometric range by adjusting the depth ratio of rectangular teeth and the width-to-depth ratio of the v-cut, the study investigates turbulent flows with Reynolds numbers spanning from 6000 to 13,000, mirroring real-world applications. The investigations unveil that the introduction of teeth to the v-cut generates a secondary vortex flow, contributing significantly to improved heat transfer by enhancing the Nusselt number ( Nu) and mitigating the reduction in heat transfer rate with increasing depth of cut at higher Reynolds numbers ( Re). The nuanced behavior of the friction factor is revealed, showcasing its inverse proportionality to Re and e/ c, and direct proportionality to b/ c, offering valuable practical insights. Remarkably, the analysis of heat transfer rate variations underscores the ANN model's predictive accuracy. Key findings include the most substantial increase in heat transfer rate for b/ c = 0.67 and e/ c = 0.14, with the ANN model predictions closely aligning with these results. The ANN model, trained on extensive datasets derived from experiments, emerges as a robust predictive tool, demonstrating mean relative errors constrained to less than 3.3% for Nusselt numbers and 0.08% for friction factors. Validation against previously unseen datasets further substantiates its efficacy, with an average percentage error of 3.32% for friction and 0.96% for Nusselt numbers. These results, along with the 97% and 99% accuracy for friction and Nusselt numbers, respectively, position the ANN model as a reliable tool for precision in predicting and optimizing heat transfer dynamics across varied engineering scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自信的冬日完成签到,获得积分10
2秒前
JiahaoRao完成签到,获得积分10
3秒前
5秒前
5秒前
haru完成签到,获得积分10
5秒前
阿涵发布了新的文献求助10
5秒前
6秒前
阳光稀完成签到,获得积分10
7秒前
乐乐应助可靠强炫采纳,获得30
7秒前
lumcy发布了新的文献求助10
8秒前
拼搏的青雪完成签到,获得积分10
8秒前
布丁完成签到,获得积分10
8秒前
南亭完成签到,获得积分10
8秒前
hetao完成签到,获得积分10
8秒前
zzzzz完成签到,获得积分10
9秒前
科研通AI2S应助j736999565采纳,获得10
9秒前
Anany发布了新的文献求助10
9秒前
淡淡的若冰应助Ganlou采纳,获得10
10秒前
凪凪发布了新的文献求助10
10秒前
烟雨醉巷完成签到 ,获得积分10
10秒前
蔷薇完成签到,获得积分10
10秒前
儒雅的焦完成签到,获得积分10
10秒前
ytrewq完成签到 ,获得积分10
10秒前
丁莞完成签到,获得积分10
11秒前
xxx完成签到,获得积分10
12秒前
12秒前
13秒前
充电宝应助阿涵采纳,获得10
13秒前
勇往直前完成签到,获得积分10
13秒前
赛赛完成签到 ,获得积分10
14秒前
14秒前
自然芹发布了新的文献求助10
15秒前
不做大哥好多年完成签到,获得积分10
15秒前
喜悦香薇完成签到 ,获得积分10
15秒前
zhang完成签到,获得积分10
16秒前
WELXCNK完成签到,获得积分10
17秒前
17秒前
源来是洲董完成签到,获得积分10
18秒前
wuda完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158687
求助须知:如何正确求助?哪些是违规求助? 2809923
关于积分的说明 7884302
捐赠科研通 2468638
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012