Simple, Efficient, and Scalable Structure-Aware Adapter Boosts Protein Language Models

适配器(计算) 计算机科学 可扩展性 人工智能 水准点(测量) 卡斯普 机器学习 蛋白质结构预测 蛋白质结构 生物 数据库 计算机硬件 生物化学 大地测量学 地理
作者
Yang Tan,Mingchen Li,Bingxin Zhou,Bozitao Zhong,Lirong Zheng,Pan Tan,Ziyi Zhou,Huiqun Yu,Guisheng Fan,Liang Hong
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (16): 6338-6349 被引量:3
标识
DOI:10.1021/acs.jcim.4c00689
摘要

Fine-tuning pretrained protein language models (PLMs) has emerged as a prominent strategy for enhancing downstream prediction tasks, often outperforming traditional supervised learning approaches. As a widely applied powerful technique in natural language processing, employing parameter-efficient fine-tuning techniques could potentially enhance the performance of PLMs. However, the direct transfer to life science tasks is nontrivial due to the different training strategies and data forms. To address this gap, we introduce SES-Adapter, a simple, efficient, and scalable adapter method for enhancing the representation learning of PLMs. SES-Adapter incorporates PLM embeddings with structural sequence embeddings to create structure-aware representations. We show that the proposed method is compatible with different PLM architectures and across diverse tasks. Extensive evaluations are conducted on 2 types of folding structures with notable quality differences, 9 state-of-the-art baselines, and 9 benchmark data sets across distinct downstream tasks. Results show that compared to vanilla PLMs, SES-Adapter improves downstream task performance by a maximum of 11% and an average of 3%, with significantly accelerated convergence speed by a maximum of 1034% and an average of 362%, the training efficiency is also improved by approximately 2 times. Moreover, positive optimization is observed even with low-quality predicted structures. The source code for SES-Adapter is available at https://github.com/tyang816/SES-Adapter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LIU发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助kai采纳,获得10
2秒前
2秒前
ll完成签到,获得积分10
3秒前
3秒前
善学以致用应助hehe采纳,获得10
4秒前
nuo_11完成签到,获得积分10
4秒前
xhsz1111发布了新的文献求助10
5秒前
Taoie发布了新的文献求助10
5秒前
7秒前
毛一一发布了新的文献求助10
7秒前
科研通AI5应助youxingyu采纳,获得10
8秒前
fff发布了新的文献求助10
8秒前
皮三问完成签到,获得积分0
8秒前
子车茗应助逢场作戱__采纳,获得40
9秒前
科研通AI2S应助独特静枫采纳,获得10
9秒前
10秒前
奥沙利楠发布了新的文献求助10
10秒前
JamesPei应助lc采纳,获得10
11秒前
安好发布了新的文献求助10
11秒前
薛十七应助贺岚采纳,获得20
11秒前
彭于晏应助妮妮采纳,获得10
12秒前
CLX。完成签到,获得积分10
14秒前
xsh发布了新的文献求助10
15秒前
深情安青应助fff采纳,获得10
15秒前
16秒前
月亮完成签到 ,获得积分10
16秒前
17秒前
kai完成签到,获得积分10
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
奥沙利楠发布了新的文献求助10
20秒前
21秒前
彩色冥幽完成签到,获得积分10
21秒前
22秒前
22秒前
KevinLeng发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073632
求助须知:如何正确求助?哪些是违规求助? 4293744
关于积分的说明 13379375
捐赠科研通 4115142
什么是DOI,文献DOI怎么找? 2253454
邀请新用户注册赠送积分活动 1258217
关于科研通互助平台的介绍 1191108