适配器(计算)
计算机科学
可扩展性
人工智能
水准点(测量)
卡斯普
机器学习
蛋白质结构预测
蛋白质结构
生物
数据库
计算机硬件
生物化学
大地测量学
地理
作者
Yang Tan,Mingchen Li,Bingxin Zhou,Bozitao Zhong,Lirong Zheng,Pan Tan,Ziyi Zhou,Huiqun Yu,Guisheng Fan,Hong Liang
标识
DOI:10.1021/acs.jcim.4c00689
摘要
Fine-tuning pretrained protein language models (PLMs) has emerged as a prominent strategy for enhancing downstream prediction tasks, often outperforming traditional supervised learning approaches. As a widely applied powerful technique in natural language processing, employing parameter-efficient fine-tuning techniques could potentially enhance the performance of PLMs. However, the direct transfer to life science tasks is nontrivial due to the different training strategies and data forms. To address this gap, we introduce SES-Adapter, a simple, efficient, and scalable adapter method for enhancing the representation learning of PLMs. SES-Adapter incorporates PLM embeddings with structural sequence embeddings to create structure-aware representations. We show that the proposed method is compatible with different PLM architectures and across diverse tasks. Extensive evaluations are conducted on 2 types of folding structures with notable quality differences, 9 state-of-the-art baselines, and 9 benchmark data sets across distinct downstream tasks. Results show that compared to vanilla PLMs, SES-Adapter improves downstream task performance by a maximum of 11% and an average of 3%, with significantly accelerated convergence speed by a maximum of 1034% and an average of 362%, the training efficiency is also improved by approximately 2 times. Moreover, positive optimization is observed even with low-quality predicted structures. The source code for SES-Adapter is available at https://github.com/tyang816/SES-Adapter.
科研通智能强力驱动
Strongly Powered by AbleSci AI