Simple, Efficient, and Scalable Structure-Aware Adapter Boosts Protein Language Models

适配器(计算) 计算机科学 可扩展性 人工智能 水准点(测量) 卡斯普 机器学习 蛋白质结构预测 蛋白质结构 生物 数据库 计算机硬件 大地测量学 生物化学 地理
作者
Yang Tan,Mingchen Li,Bingxin Zhou,Bozitao Zhong,Lirong Zheng,Pan Tan,Ziyi Zhou,Huiqun Yu,Guisheng Fan,Liang Hong
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (16): 6338-6349 被引量:3
标识
DOI:10.1021/acs.jcim.4c00689
摘要

Fine-tuning pretrained protein language models (PLMs) has emerged as a prominent strategy for enhancing downstream prediction tasks, often outperforming traditional supervised learning approaches. As a widely applied powerful technique in natural language processing, employing parameter-efficient fine-tuning techniques could potentially enhance the performance of PLMs. However, the direct transfer to life science tasks is nontrivial due to the different training strategies and data forms. To address this gap, we introduce SES-Adapter, a simple, efficient, and scalable adapter method for enhancing the representation learning of PLMs. SES-Adapter incorporates PLM embeddings with structural sequence embeddings to create structure-aware representations. We show that the proposed method is compatible with different PLM architectures and across diverse tasks. Extensive evaluations are conducted on 2 types of folding structures with notable quality differences, 9 state-of-the-art baselines, and 9 benchmark data sets across distinct downstream tasks. Results show that compared to vanilla PLMs, SES-Adapter improves downstream task performance by a maximum of 11% and an average of 3%, with significantly accelerated convergence speed by a maximum of 1034% and an average of 362%, the training efficiency is also improved by approximately 2 times. Moreover, positive optimization is observed even with low-quality predicted structures. The source code for SES-Adapter is available at https://github.com/tyang816/SES-Adapter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
z610938841发布了新的文献求助30
刚刚
1秒前
1秒前
BAEKHYUNLUCKY完成签到,获得积分10
1秒前
1秒前
4秒前
4秒前
科研通AI5应助xx采纳,获得10
4秒前
5秒前
5秒前
朱巴子完成签到,获得积分10
5秒前
酷波er应助博修采纳,获得10
6秒前
BAEKHYUNLUCKY发布了新的文献求助10
6秒前
英姑应助yushiolo采纳,获得10
6秒前
7秒前
徐徐完成签到,获得积分10
7秒前
8秒前
8秒前
FashionBoy应助火星上的澜采纳,获得30
9秒前
无私冥幽发布了新的文献求助10
10秒前
11秒前
CJY发布了新的文献求助30
12秒前
顾矜应助坚强的严青采纳,获得10
12秒前
void科学家完成签到,获得积分10
13秒前
13秒前
扎心应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得30
14秒前
orixero应助科研通管家采纳,获得10
14秒前
Lee完成签到,获得积分10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
mx应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得30
15秒前
英姑应助科研通管家采纳,获得30
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403