Advances on MXene-Based Memristors for Neuromorphic Computing: A Review on Synthesis, Mechanisms, and Future Directions

神经形态工程学 记忆电阻器 纳米技术 计算机体系结构 材料科学 计算机科学 工程类 人工智能 电子工程 人工神经网络
作者
Henrique Teixeira,Catarina Dias,Andreia Silva,J. Ventura
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c03264
摘要

Neuromorphic computing seeks to replicate the capabilities of parallel processing, progressive learning, and inference while retaining low power consumption by drawing inspiration from the human brain. By further overcoming the constraints imposed by the traditional von Neumann architecture, this innovative approach has the potential to revolutionize modern computing systems. Memristors have emerged as a solution to implement neuromorphic computing in hardware, with research based on developing functional materials for resistive switching performance enhancement. Recently, two-dimensional MXenes, a family of transition metal carbides, nitrides, and carbonitrides, have begun to be integrated into these devices to achieve synaptic emulation. MXene-based memristors have already demonstrated diverse neuromorphic characteristics while enhancing the stability and reducing power consumption. The possibility of changing the physicochemical properties through modifications of the surface terminations, bandgap, interlayer spacing, and oxidation for each existing MXene makes them very promising. Here, recent advancements in MXene synthesis, device fabrication, and characterization of MXene-based neuromorphic artificial synapses are discussed. Then, we focus on understanding the resistive switching mechanisms and how they connect with theoretical and experimental data, along with the innovations made during the fabrication process. Additionally, we provide an in-depth review of the neuromorphic performance, making a connection with the resistive switching mechanism, along with a compendium of each relevant performance factor for nonvolatile and volatile applications. Finally, we state the remaining challenges in MXene-based devices for artificial synapses and the next steps that could be taken for future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助gdh采纳,获得10
1秒前
Majician完成签到,获得积分10
3秒前
3秒前
Akim应助失重心跳采纳,获得10
4秒前
NexusExplorer应助surain采纳,获得30
4秒前
拼搏的宇完成签到 ,获得积分10
5秒前
科目三应助啊啊啊lei采纳,获得10
5秒前
万能图书馆应助小武wwwww采纳,获得10
5秒前
6秒前
马马马发布了新的文献求助10
7秒前
bkagyin应助你好啊采纳,获得10
7秒前
在水一方应助huco采纳,获得10
9秒前
9秒前
慕青应助顾文强采纳,获得10
9秒前
10秒前
10秒前
12秒前
析界成微完成签到,获得积分10
13秒前
烦人精发布了新的文献求助30
14秒前
15秒前
15秒前
坚强擎汉完成签到,获得积分10
16秒前
SciGPT应助柔弱的问梅采纳,获得10
16秒前
16秒前
16秒前
ShengQ完成签到,获得积分10
17秒前
17秒前
啊啊啊lei发布了新的文献求助10
18秒前
19秒前
失重心跳发布了新的文献求助10
21秒前
不配.应助oiioi采纳,获得10
21秒前
析界成微发布了新的文献求助10
22秒前
大模型应助Oz采纳,获得10
22秒前
顾文强发布了新的文献求助10
24秒前
25秒前
Kenvine完成签到,获得积分10
25秒前
27秒前
27秒前
27秒前
高海龙发布了新的文献求助10
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043