CEH-YOLO: A composite enhanced YOLO-based model for underwater object detection

水下 对象(语法) 复合数 目标检测 计算机科学 人工智能 计算机视觉 模式识别(心理学) 地质学 海洋学 算法
作者
Jiangfan Feng,Jin Tao
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:82: 102758-102758 被引量:7
标识
DOI:10.1016/j.ecoinf.2024.102758
摘要

Advances in underwater recording and processing systems have highlighted the need for automated methods dedicated to the accurate detection and tracking of small underwater objects in imagery. However, the unique characteristics of underwater optical images, including low contrast, color variations, and the presence of small objects, pose significant challenges. This paper presents CEH-YOLO, a variant of YOLOv8, incorporating a high-order deformable attention (HDA) module to enhance spatial feature extraction and interaction by prioritizing key areas within the model. Additionally, the enhanced spatial pyramid pooling-fast (ESPPF) module is integrated to enhance the extraction of object attributes, such as color and texture, which is particularly beneficial in scenarios with small or overlapping objects. The customized composite detection (CD) module further improves the accuracy and inclusivity of object detection. Moreover, the model uses the WIoU v3 technique for bounding box loss calculations, effectively addressing regression challenges related to bounding boxes under standard and extreme conditions. The experimental results show the model's exceptional performance, achieving mean average precisions of 88.4% and 87.7% on the DUO and UTDAC2020 datasets, respectively. Notably, the model operates at a rapid detection speed of 156 FPS, fulfilling critical real-time detection needs. With a concise model size of 4.4 M and a moderate computational complexity of 11.6 GFLOPs, it is highly suitable for integration into underwater detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助我就是歌手采纳,获得10
刚刚
SHAO应助阿雷采纳,获得10
刚刚
东单的单车完成签到,获得积分10
刚刚
你好发布了新的文献求助10
1秒前
1秒前
米糊发布了新的文献求助10
1秒前
1秒前
wy1693207859发布了新的文献求助10
2秒前
2秒前
2秒前
广予发布了新的文献求助10
2秒前
彭于晏应助Miki采纳,获得30
3秒前
3秒前
3秒前
4秒前
认真若云完成签到,获得积分10
5秒前
harmy发布了新的文献求助10
5秒前
Orange应助哈哈哈哈采纳,获得10
5秒前
依依发布了新的文献求助10
5秒前
不期而遇0811完成签到,获得积分20
7秒前
墩墩完成签到,获得积分10
7秒前
8秒前
彭于彦祖应助Tina采纳,获得30
8秒前
认真若云发布了新的文献求助10
8秒前
8秒前
8秒前
内向的小霸王完成签到,获得积分10
8秒前
Owen应助Lenacici采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
WRZ发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
橘子发布了新的文献求助10
12秒前
12秒前
SciGPT应助Yahui采纳,获得10
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111