CEH-YOLO: A composite enhanced YOLO-based model for underwater object detection

水下 对象(语法) 复合数 目标检测 计算机科学 人工智能 计算机视觉 模式识别(心理学) 地质学 海洋学 算法
作者
Jiangfan Feng,Jin Tao
出处
期刊:Ecological Informatics [Elsevier]
卷期号:82: 102758-102758 被引量:1
标识
DOI:10.1016/j.ecoinf.2024.102758
摘要

Advances in underwater recording and processing systems have highlighted the need for automated methods dedicated to the accurate detection and tracking of small underwater objects in imagery. However, the unique characteristics of underwater optical images, including low contrast, color variations, and the presence of small objects, pose significant challenges. This paper presents CEH-YOLO, a variant of YOLOv8, incorporating a high-order deformable attention (HDA) module to enhance spatial feature extraction and interaction by prioritizing key areas within the model. Additionally, the enhanced spatial pyramid pooling-fast (ESPPF) module is integrated to enhance the extraction of object attributes, such as color and texture, which is particularly beneficial in scenarios with small or overlapping objects. The customized composite detection (CD) module further improves the accuracy and inclusivity of object detection. Moreover, the model uses the WIoU v3 technique for bounding box loss calculations, effectively addressing regression challenges related to bounding boxes under standard and extreme conditions. The experimental results show the model's exceptional performance, achieving mean average precisions of 88.4% and 87.7% on the DUO and UTDAC2020 datasets, respectively. Notably, the model operates at a rapid detection speed of 156 FPS, fulfilling critical real-time detection needs. With a concise model size of 4.4 M and a moderate computational complexity of 11.6 GFLOPs, it is highly suitable for integration into underwater detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助Strike采纳,获得10
刚刚
1秒前
手可摘星辰89完成签到,获得积分10
1秒前
1秒前
jindou发布了新的文献求助10
3秒前
夏蓉发布了新的文献求助10
3秒前
5秒前
无花果应助proteinpurify采纳,获得30
6秒前
贰卷完成签到,获得积分10
6秒前
顺利琦发布了新的文献求助10
8秒前
9秒前
脑洞疼应助kjding采纳,获得10
9秒前
11秒前
西伯利亚快车关注了科研通微信公众号
12秒前
13秒前
蓬蒿完成签到 ,获得积分10
13秒前
13秒前
14秒前
风雪丽人完成签到,获得积分10
14秒前
14秒前
科研通AI2S应助我是125采纳,获得10
14秒前
Q97完成签到 ,获得积分10
15秒前
15秒前
小郭发布了新的文献求助10
16秒前
wilsonht发布了新的文献求助60
18秒前
18秒前
luqian发布了新的文献求助10
18秒前
18秒前
难摧发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
领导范儿应助奋斗的怀曼采纳,获得10
21秒前
逸群发布了新的文献求助10
22秒前
22秒前
23秒前
彭于晏应助漂亮的素采纳,获得10
23秒前
LiangRen发布了新的文献求助10
23秒前
24秒前
英姑应助啊哦嘿采纳,获得10
25秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291