清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 病理 操作系统
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
long发布了新的文献求助10
16秒前
Wan完成签到,获得积分10
33秒前
42秒前
lhl完成签到,获得积分0
47秒前
48秒前
1分钟前
cadcae完成签到,获得积分10
1分钟前
huco完成签到,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
鲤鱼山人完成签到 ,获得积分10
1分钟前
浮游应助王贤平采纳,获得10
1分钟前
科科通通完成签到,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
刘玲完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助王贤平采纳,获得10
2分钟前
静静完成签到 ,获得积分10
2分钟前
Lillianzhu1完成签到,获得积分10
2分钟前
内向的雅山应助香菜张采纳,获得10
2分钟前
李爱国应助香菜张采纳,获得50
2分钟前
王贤平完成签到,获得积分10
2分钟前
美好灵寒完成签到 ,获得积分10
2分钟前
long发布了新的文献求助10
2分钟前
2分钟前
2分钟前
dx完成签到,获得积分10
2分钟前
debu9完成签到,获得积分10
3分钟前
自然亦凝完成签到,获得积分10
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
上官若男应助科研通管家采纳,获得50
3分钟前
3分钟前
传奇3应助舒适的大有采纳,获得10
3分钟前
myq完成签到 ,获得积分10
3分钟前
香菜张完成签到,获得积分10
3分钟前
龚瑶完成签到 ,获得积分10
3分钟前
3分钟前
ayato发布了新的文献求助10
3分钟前
hqh发布了新的文献求助10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534583
求助须知:如何正确求助?哪些是违规求助? 4622588
关于积分的说明 14582660
捐赠科研通 4562738
什么是DOI,文献DOI怎么找? 2500362
邀请新用户注册赠送积分活动 1479864
关于科研通互助平台的介绍 1451095