Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 病理 操作系统
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzx发布了新的文献求助10
1秒前
xyy102发布了新的文献求助10
1秒前
CodeCraft应助姜茶采纳,获得10
1秒前
传统的纸飞机完成签到 ,获得积分10
1秒前
1秒前
123发布了新的文献求助10
1秒前
SYS发布了新的文献求助10
3秒前
3秒前
3秒前
调皮的大炮完成签到 ,获得积分10
4秒前
科研通AI6应助嘿嘿嘿嘿采纳,获得10
4秒前
微笑的丑发布了新的文献求助10
5秒前
xiu-er完成签到,获得积分20
5秒前
5秒前
HuiJN完成签到 ,获得积分10
6秒前
wanci应助wangteng采纳,获得10
6秒前
wh完成签到,获得积分10
8秒前
小二郎应助搞搞学术吧采纳,获得10
8秒前
吴大宝完成签到,获得积分10
8秒前
加油kiki发布了新的文献求助10
8秒前
8秒前
景玉发布了新的文献求助30
9秒前
xiu-er发布了新的文献求助10
9秒前
鳗鱼忘幽完成签到 ,获得积分10
9秒前
科研通AI6应助michael采纳,获得30
10秒前
cc完成签到 ,获得积分10
10秒前
11秒前
归尘应助小郗采纳,获得10
11秒前
12秒前
lzx完成签到,获得积分10
12秒前
魔丸完成签到,获得积分10
12秒前
yuyan完成签到,获得积分10
12秒前
chaviva发布了新的文献求助10
13秒前
温暖的俊驰完成签到,获得积分10
15秒前
隐形滑板发布了新的文献求助10
16秒前
16秒前
16秒前
ark861023发布了新的文献求助10
16秒前
隐形曼青应助微笑的丑采纳,获得10
16秒前
Yuki完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478622
求助须知:如何正确求助?哪些是违规求助? 4580239
关于积分的说明 14372881
捐赠科研通 4508614
什么是DOI,文献DOI怎么找? 2470795
邀请新用户注册赠送积分活动 1457548
关于科研通互助平台的介绍 1431443