亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 操作系统 病理
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
ding应助Wa1Zh0u采纳,获得30
14秒前
无情的琳发布了新的文献求助10
15秒前
20秒前
26秒前
30秒前
31秒前
null应助wggggggy采纳,获得10
38秒前
38秒前
Criminology34应助科研通管家采纳,获得10
46秒前
Criminology34应助科研通管家采纳,获得10
47秒前
Criminology34应助科研通管家采纳,获得10
47秒前
Criminology34应助科研通管家采纳,获得10
47秒前
51秒前
子訡完成签到 ,获得积分10
51秒前
52秒前
52秒前
zone54188发布了新的文献求助10
57秒前
无情的琳发布了新的文献求助10
1分钟前
1分钟前
nojego完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助fighting采纳,获得10
1分钟前
传奇3应助无情的琳采纳,获得10
1分钟前
1分钟前
2分钟前
科研通AI6应助fighting采纳,获得10
2分钟前
无情的琳发布了新的文献求助10
2分钟前
2分钟前
fighting完成签到,获得积分10
2分钟前
Jasper应助yg采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
月亮完成签到,获得积分10
2分钟前
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401