Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 病理 操作系统
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZC10完成签到,获得积分10
刚刚
fzzf完成签到,获得积分10
1秒前
文艺的访曼完成签到,获得积分10
1秒前
果果完成签到,获得积分10
2秒前
故事细腻完成签到 ,获得积分10
3秒前
poplin完成签到 ,获得积分10
4秒前
4秒前
俭朴觅松发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
4秒前
艺yi完成签到,获得积分10
4秒前
JCSY应助阿龙采纳,获得10
5秒前
5秒前
粱乘风完成签到,获得积分10
6秒前
zzzz完成签到,获得积分10
6秒前
东郭秋凌完成签到,获得积分10
6秒前
6秒前
啵啵奶冻完成签到 ,获得积分10
7秒前
优美紫槐应助科研通管家采纳,获得10
7秒前
周浩宇完成签到,获得积分10
7秒前
优美紫槐应助科研通管家采纳,获得10
7秒前
优美紫槐应助科研通管家采纳,获得10
8秒前
Clover04应助科研通管家采纳,获得10
8秒前
优美紫槐应助科研通管家采纳,获得10
8秒前
林奇完成签到,获得积分10
8秒前
xfy应助科研通管家采纳,获得10
8秒前
滕祥应助科研通管家采纳,获得10
8秒前
Clover04应助科研通管家采纳,获得10
8秒前
优美紫槐应助科研通管家采纳,获得10
8秒前
畅快山兰完成签到 ,获得积分10
9秒前
Clover04应助科研通管家采纳,获得10
9秒前
滕祥应助科研通管家采纳,获得10
9秒前
9秒前
吴亚运发布了新的文献求助10
9秒前
gaoxiaogao完成签到,获得积分10
10秒前
熙梓日记完成签到,获得积分10
10秒前
jingcheng完成签到,获得积分10
10秒前
Jasper应助完美的皮卡丘采纳,获得10
11秒前
司空元正完成签到 ,获得积分10
11秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698860
求助须知:如何正确求助?哪些是违规求助? 5127041
关于积分的说明 15222713
捐赠科研通 4853854
什么是DOI,文献DOI怎么找? 2604340
邀请新用户注册赠送积分活动 1555814
关于科研通互助平台的介绍 1514139