亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 操作系统 病理
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE Publishing]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Honor完成签到 ,获得积分10
1秒前
null应助科研通管家采纳,获得10
2秒前
null应助科研通管家采纳,获得10
2秒前
null应助科研通管家采纳,获得10
2秒前
null应助科研通管家采纳,获得10
2秒前
卖辣条的小浣熊完成签到,获得积分10
10秒前
物理大诗完成签到 ,获得积分10
10秒前
13秒前
我是老大应助ZR采纳,获得10
13秒前
友好胜完成签到 ,获得积分10
15秒前
15秒前
15秒前
Lalala发布了新的文献求助30
20秒前
21秒前
机智的天宇完成签到 ,获得积分10
24秒前
谈理想发布了新的文献求助20
29秒前
LMW应助rr123456采纳,获得10
30秒前
Lalala发布了新的文献求助10
40秒前
moiumuio完成签到,获得积分10
47秒前
涵涵涵hh完成签到 ,获得积分10
52秒前
52秒前
机灵的衬衫完成签到 ,获得积分10
56秒前
Lalala完成签到,获得积分10
56秒前
1分钟前
MTF完成签到 ,获得积分10
1分钟前
1分钟前
feifei发布了新的文献求助10
1分钟前
PiX0应助冰河采纳,获得20
1分钟前
无风发布了新的文献求助10
1分钟前
ning完成签到,获得积分10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
LMW应助科研通管家采纳,获得10
2分钟前
LMW应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
彩虹儿应助科研通管家采纳,获得30
2分钟前
null应助科研通管家采纳,获得10
2分钟前
GreenT完成签到,获得积分10
2分钟前
科研通AI6应助无风采纳,获得10
2分钟前
2分钟前
CAE上路到上吊完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625691
求助须知:如何正确求助?哪些是违规求助? 4024822
关于积分的说明 12457918
捐赠科研通 3709852
什么是DOI,文献DOI怎么找? 2046335
邀请新用户注册赠送积分活动 1078187
科研通“疑难数据库(出版商)”最低求助积分说明 960719