Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 病理 操作系统
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定成风完成签到,获得积分0
刚刚
顾矜应助美好的碧萱采纳,获得10
刚刚
jzhou88完成签到,获得积分10
3秒前
daqisong完成签到,获得积分10
3秒前
MchemG应助彭栋采纳,获得20
3秒前
南风完成签到,获得积分10
3秒前
完美世界应助白衣修身采纳,获得10
3秒前
4秒前
pencil123完成签到,获得积分10
4秒前
5秒前
6秒前
上官若男应助aYXZ321采纳,获得10
6秒前
7秒前
9秒前
SciGPT应助凯旋采纳,获得10
10秒前
朝阳满意发布了新的文献求助10
10秒前
jys发布了新的文献求助10
11秒前
嘿嘿发布了新的文献求助20
11秒前
12秒前
科研通AI6应助2哇哇哇采纳,获得10
12秒前
key完成签到,获得积分10
12秒前
12秒前
言小完成签到,获得积分10
13秒前
bububusbu完成签到,获得积分10
15秒前
16秒前
完美世界应助apong采纳,获得10
17秒前
汉堡包应助排骨年糕采纳,获得10
17秒前
明理慕灵发布了新的文献求助10
18秒前
18秒前
隐形曼青应助Xiaoxiannv采纳,获得10
18秒前
嗯嗯完成签到 ,获得积分10
19秒前
19秒前
seven765发布了新的文献求助10
20秒前
范米粒完成签到,获得积分20
20秒前
21秒前
21秒前
爆米花应助愉快的冉阿让采纳,获得10
22秒前
心静如水发布了新的文献求助10
22秒前
aYXZ321发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565449
求助须知:如何正确求助?哪些是违规求助? 4650499
关于积分的说明 14691551
捐赠科研通 4592435
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492011
关于科研通互助平台的介绍 1463232