亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 病理 操作系统
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
21秒前
圈圈圆了发布了新的文献求助50
27秒前
圈圈圆了完成签到,获得积分10
35秒前
1分钟前
ala发布了新的文献求助10
1分钟前
1分钟前
乐观生活发布了新的文献求助10
1分钟前
今后应助乐观生活采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
昭荃完成签到 ,获得积分0
2分钟前
3分钟前
李健的小迷弟应助Authorll采纳,获得10
3分钟前
3分钟前
Authorll发布了新的文献求助10
3分钟前
3分钟前
Authorll完成签到,获得积分10
3分钟前
鹏虫虫发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
鹏虫虫发布了新的文献求助10
4分钟前
4分钟前
领导范儿应助隐形的妙松采纳,获得10
4分钟前
willlee发布了新的文献求助10
4分钟前
华仔应助艾艾采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
willlee完成签到,获得积分10
4分钟前
巅峰囚冰完成签到,获得积分10
5分钟前
Moto_Fang完成签到 ,获得积分10
5分钟前
5分钟前
震千筹完成签到,获得积分10
5分钟前
艾艾发布了新的文献求助10
5分钟前
rengar完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
6分钟前
鹏虫虫发布了新的文献求助10
6分钟前
慕青应助余郑宇采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438545
求助须知:如何正确求助?哪些是违规求助? 4549740
关于积分的说明 14220869
捐赠科研通 4470545
什么是DOI,文献DOI怎么找? 2449937
邀请新用户注册赠送积分活动 1440904
关于科研通互助平台的介绍 1417341