Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 病理 操作系统
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
山山而川完成签到,获得积分10
1秒前
2秒前
华仔应助彭佳丽采纳,获得10
2秒前
凉快发布了新的文献求助10
3秒前
藤藤菜发布了新的文献求助10
3秒前
隐形曼青应助己心山采纳,获得10
4秒前
4秒前
離原完成签到,获得积分10
4秒前
5秒前
zhzhzh发布了新的文献求助10
6秒前
6秒前
6秒前
梅川秋裤完成签到,获得积分10
7秒前
7秒前
善良苠发布了新的文献求助10
8秒前
9秒前
9秒前
大成子完成签到,获得积分10
10秒前
BI完成签到 ,获得积分10
10秒前
song完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
丘比特应助hahage采纳,获得30
11秒前
11秒前
13秒前
13秒前
徐哈哈发布了新的文献求助10
13秒前
14秒前
henry2014完成签到,获得积分10
14秒前
ric发布了新的文献求助20
14秒前
xny发布了新的文献求助10
15秒前
时间纬度完成签到,获得积分10
15秒前
拓跋凝海完成签到,获得积分10
16秒前
精明如波完成签到,获得积分10
16秒前
醒着做梦发布了新的文献求助10
16秒前
wmk完成签到,获得积分10
17秒前
18秒前
Never stall发布了新的文献求助10
19秒前
凉快完成签到,获得积分10
19秒前
CodeCraft应助南湖秋水采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308509
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506144
捐赠科研通 2616825
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649040