Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 操作系统 病理
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
早日发文章完成签到,获得积分10
2秒前
夕北发布了新的文献求助30
2秒前
棉花团完成签到,获得积分10
2秒前
xin发布了新的文献求助30
3秒前
4秒前
left_right完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
星辰大海应助ilovestudy采纳,获得10
6秒前
6秒前
phil完成签到,获得积分10
7秒前
小扇完成签到,获得积分10
7秒前
8秒前
番茄鱼完成签到 ,获得积分10
9秒前
lili完成签到,获得积分10
9秒前
10秒前
唐唐发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
小扇发布了新的文献求助10
14秒前
豪大大12138完成签到,获得积分10
14秒前
14秒前
CodeCraft应助ZHY采纳,获得10
14秒前
初识发布了新的文献求助10
16秒前
21秒前
21秒前
英俊的尔容完成签到,获得积分10
22秒前
shor0414完成签到 ,获得积分10
23秒前
24秒前
24秒前
stop here完成签到,获得积分10
24秒前
25秒前
初识完成签到,获得积分20
25秒前
唐唐发布了新的文献求助20
27秒前
温医第一打野完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
小年小少发布了新的文献求助10
28秒前
ajun发布了新的文献求助10
28秒前
激流勇进wb完成签到 ,获得积分10
28秒前
29秒前
巨无霸完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742102
求助须知:如何正确求助?哪些是违规求助? 5405928
关于积分的说明 15343995
捐赠科研通 4883565
什么是DOI,文献DOI怎么找? 2625098
邀请新用户注册赠送积分活动 1573960
关于科研通互助平台的介绍 1530910