Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 病理 操作系统
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵发布了新的文献求助10
1秒前
完美世界应助发发采纳,获得10
1秒前
星辰大海应助huhuodan采纳,获得10
2秒前
hr520824应助白一陈采纳,获得10
2秒前
淡淡的白羊完成签到 ,获得积分10
3秒前
Ryki发布了新的文献求助10
3秒前
Cheems发布了新的文献求助10
4秒前
DawudShan发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
乐观的思卉完成签到,获得积分10
6秒前
cc完成签到 ,获得积分10
6秒前
科研通AI2S应助闪亮的皮蛋采纳,获得10
7秒前
7秒前
小昊发布了新的文献求助10
7秒前
不二家的卡农完成签到,获得积分10
8秒前
9秒前
英俊的铭应助YutingLiu采纳,获得10
9秒前
llllliu完成签到,获得积分10
9秒前
闪闪绮山关注了科研通微信公众号
10秒前
11秒前
SciGPT应助不想看文献采纳,获得10
11秒前
DawudShan完成签到,获得积分10
11秒前
科研通AI2S应助cxt采纳,获得10
11秒前
11秒前
11秒前
enen发布了新的文献求助10
14秒前
14秒前
14秒前
zxe完成签到,获得积分10
17秒前
爱笑的汽车发布了新的文献求助200
17秒前
18秒前
18秒前
Nickname发布了新的文献求助200
19秒前
ann发布了新的文献求助10
19秒前
CipherSage应助MU采纳,获得50
19秒前
Yuan完成签到,获得积分10
21秒前
hx666发布了新的文献求助10
22秒前
橙花发布了新的文献求助10
23秒前
西蜀小吏发布了新的文献求助10
23秒前
李爱国应助17采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513655
求助须知:如何正确求助?哪些是违规求助? 4607855
关于积分的说明 14507128
捐赠科研通 4543421
什么是DOI,文献DOI怎么找? 2489541
邀请新用户注册赠送积分活动 1471503
关于科研通互助平台的介绍 1443477