Multivariate Bayesian Analyses in Nursing Research: An Introductory Guide

计算机科学 贝叶斯概率 多元统计 数据科学 多重共线性 可执行文件 护理研究 多元分析 数据挖掘 机器学习 人工智能 回归分析 医学 病理 操作系统
作者
Lacey W. Heinsberg,Tara S. Davis,Dermot Maher,Catherine M. Bender,Yvette P. Conley,Daniel E. Weeks
出处
期刊:Biological Research For Nursing [SAGE]
标识
DOI:10.1177/10998004241292644
摘要

In the era of precision health, nursing research has increasingly focused on the analysis of large, multidimensional data sets containing multiple correlated phenotypes (e.g., symptoms). This presents challenges for statistical analyses, especially in genetic association studies. For example, the inclusion of multiple symptoms within a single model can raise concerns about multicollinearity, while individual SNP-symptom analyses may obscure complex relationships. As such, many traditional statistical approaches often fall short in providing a comprehensive understanding of the complexity inherent in many nursing-focused research questions. Multivariate Bayesian approaches offer the unique advantage of allowing researchers to ask questions that are not feasible with traditional approaches. Specifically, these methods support the simultaneous exploration of multiple phenotypes, accounting for the underlying correlational structure between variables, and allow for formal incorporation of existing knowledge into the statistical model. By doing so, they may provide a more realistic view of statistical relationships within a biological system, potentially uncovering new insights into well-established and undiscovered connections, such as the probabilities of association and direct versus indirect effects. This valuable information can help us better understand our phenotypes of interest, leading to more effective nurse-led intervention and prevention programs. To illustrate these concepts, this paper includes an application section covering two specific multivariate Bayesian analysis software programs, bnlearn and mvBIMBAM, with an emphasis on interpretation and extension to nursing research. To complement the paper, we provide access to a detailed online tutorial, including executable R code and a synthetic data set, so the concepts can be more easily extended to other research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
喵喵完成签到 ,获得积分10
1秒前
邢智超发布了新的文献求助10
1秒前
1秒前
CipherSage应助卷卷采纳,获得10
2秒前
各位大牛帮帮忙完成签到,获得积分10
3秒前
3秒前
Joyce完成签到 ,获得积分10
3秒前
顾矜应助忧郁的白竹采纳,获得10
3秒前
3秒前
4秒前
专注阑悦发布了新的文献求助10
4秒前
4秒前
求助人员发布了新的文献求助10
5秒前
靖宇完成签到,获得积分10
5秒前
gxh发布了新的文献求助10
5秒前
蔡伟伦完成签到,获得积分10
5秒前
Biophilia完成签到 ,获得积分10
6秒前
邢智超完成签到,获得积分20
6秒前
凌寒233发布了新的文献求助10
6秒前
桐桐应助chai采纳,获得10
6秒前
XXH完成签到 ,获得积分10
7秒前
体贴的小天鹅完成签到,获得积分10
7秒前
深情安青应助zxx采纳,获得10
7秒前
thousandlong发布了新的文献求助10
8秒前
眼睛大夜白完成签到 ,获得积分10
8秒前
8秒前
漂亮的千雁完成签到,获得积分20
8秒前
陆陆完成签到 ,获得积分10
8秒前
8秒前
dzyg6完成签到,获得积分10
9秒前
共享精神应助小羽采纳,获得10
9秒前
神勇的豁完成签到,获得积分10
9秒前
09233完成签到,获得积分20
9秒前
幽默的尔岚完成签到,获得积分10
9秒前
小小小珂卿完成签到,获得积分10
10秒前
996755完成签到 ,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
俏皮的豌豆完成签到,获得积分10
10秒前
优秀丹琴发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494