富勒烯
封装(网络)
钙钛矿(结构)
材料科学
电子
电子传输链
纳米技术
化学工程
化学
结晶学
有机化学
计算机科学
物理
量子力学
生物化学
工程类
计算机网络
作者
Enlong Hou,Shuo Cheng,Yu Qiu,Xingyu Chen,Jingfu Chen,Chao Sun,Hui Zhang,Jinxin Yang,Xinjing Zhao,Liqiang Xie,Zuo‐Chang Chen,Chengbo Tian,Zhanhua Wei
标识
DOI:10.1002/ange.202416703
摘要
A stable and compact fullerene electron transport layer (ETL) is crucial for high‐performance inverted perovskite solar cells (PSCs). However, traditional fullerene‐based ETLs like C60 and PCBM are prone to aggregate under operational conditions, a challenge recently recognized by academic and industrial researchers. Here, we designed and synthesized a novel cross‐linkable fullerene molecule, bis((3‐methyloxetan‐3‐yl)methyl) malonate‐C60 monoadduct (BCM), for use as an ETL in PSCs. Upon a low‐temperature annealing at 100 °C, BCM undergoes in‐situ cross‐linking to form a robust cross‐linked BCM (CBCM) film, which demonstrates excellent electron mobility and a suitable band structure for efficient PSCs. Our results show that PSCs incorporating CBCM‐based ETL achieve an impressive efficiency of 25.89% (certified: 25.36%), significantly surpassing the 23.25% efficiency of PCBM‐based devices. The intramolecular covalent interactions within CBCM films effectively prevent aggregation and enhance film compactness, creating an internal encapsulation layer that mitigates the decomposition and ion migration of perovskite components. Consequently, CBCM‐based PSCs show exceptional stability, maintaining 97.8% of their initial efficiency after 1000 hours of maximum power point tracking, compared to only 78.6% retention in PCBM‐based devices after less than 820 hours.
科研通智能强力驱动
Strongly Powered by AbleSci AI