神经炎症
生物标志物
内科学
医学
肿瘤科
淀粉样蛋白(真菌学)
疾病
认知功能衰退
神经心理学
心理学
痴呆
病理
认知
神经科学
生物
生物化学
作者
Fangda Leng,Rainer Hinz,Steve Gentleman,Melanie Dani,David J. Brooks,Paul Edison
摘要
Background: Neuroinflammation in Alzheimer’s disease is known as an important process in the disease, yet how microglial activation affects disease progression remains unclear. Objective: The current study aims to interrogate the predictive value of neuroinflammation biomarker (11C-PBR28 PET), together with A/T/N imaging markers on disease deterioration in a cognitively impaired patient cohort. Methods: The study included 6 AD and 27 MCI patients, who had MRI, 11C-PBR28, 18F-flutemetamol (amyloid marker), 18F-AV1451 (tau marker) PET scans, and were followed up with multiple neuropsychological assessments for at least one year (1.6 and 2.8 years on average for AD and MCI). The predictive values of imaging biomarkers on baseline and longitudinal cognition were interrogated using linear regression to identify the biomarkers that could explain disease progression. Results: Linear mixed models found the average intercepts (baseline) MMSE were 23.5 for AD and 28.2 for MCI patients, and the slope of MMSE (annual change) were –0.74 for AD and –0.52 for MCI patients. White matter microstructural integrity was predictive of baseline cognition, while PET markers of amyloid, tau and neuroinflammation were predictive of longitudinal cognitive decline. Both amyloid and neuroinflammation PET markers were predictors independent of each other. And a sub-group analysis showed the predictive effect of neuroinflammation on cognitive decline is independent of amyloid and tau. Conclusions: Our study highlights the prognostic value of disease specific markers (amyloid, tau and neuroinflammation) in clinically diagnosed AD and MCI patients and suggests that the effects of these molecular markers are mediated by structural damage to the brain.
科研通智能强力驱动
Strongly Powered by AbleSci AI