过电位
催化作用
析氧
电催化剂
分解水
异质结
材料科学
密度泛函理论
氧气
兴奋剂
电子转移
化学工程
氧化物
纳米技术
电化学
化学
物理化学
电极
光电子学
计算化学
有机化学
光催化
工程类
生物化学
冶金
作者
Xue Chen,Yilin Kong,Hongfei Yin,Xiaoyong Yang,Qiuyu Zhao,Dongdong Xiao,Zhili Wang,Yongzheng Zhang,Qi‐Kun Xue
出处
期刊:Small
[Wiley]
日期:2024-07-30
被引量:1
标识
DOI:10.1002/smll.202403427
摘要
Abstract The development of highly efficient electrocatalysts for the sluggish anodic oxygen evolution reaction (OER) is crucial to meet the practical demand for water splitting. In this study, an effective approach is proposed that simultaneously enhances interfacial interaction and catalytic activity by modifying Fe 2 O 3 /CoS heterojunction using Ru doping strategy to construct an efficient electrocatalytic oxygen evolution catalyst. The unique morphology of Ru doped Fe 2 O 3 (Ru‐Fe 2 O 3 ) nanoring decorated by CoS nanoparticles ensures a large active surface area and a high number of active sites. The designed Ru‐Fe 2 O 3 /CoS catalyst achieves a low OER overpotential (264 mV) at 10 mA cm −2 and demonstrates exceptional stability even at high current density of 100 mA cm −2 , maintaining its performance for an impressive duration of 90 h. The catalytic performance of this Ru‐Fe 2 O 3 /CoS catalyst surpasses that of other iron‐based oxide catalysts and even outperforms the state‐of‐the‐art RuO 2 . Density functional theory (DFT) calculation as well as experimental in situ characterization confirm that the introduction of Ru atoms can enhance the interfacial electron interaction, accelerating the electron transfer, and serve as highly active sites reducing the energy barrier for rate determination step. This work provides an efficient strategy to reveal the enhancement of electrocatalytic oxygen evolution activity of heterojunction catalysts by doping engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI