Cross-Modality Image Translation From Brain 18F-FDG PET/CT Images to Fluid-Attenuated Inversion Recovery Images Using the CypixGAN Framework

流体衰减反转恢复 正电子发射断层摄影术 人工智能 核医学 模式识别(心理学) 神经影像学 相似性(几何) 磁共振成像 图像质量 医学 计算机科学 放射科 图像(数学) 精神科
作者
Sangwon Lee,Jin Ho Jung,Yong Choi,Eunyeong Seok,Jiwoong Jung,Hyunkeong Lim,Dongwoo Kim,Mijin Yun
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rlu.0000000000005441
摘要

Purpose PET/CT and MRI can accurately diagnose dementia but are expensive and inconvenient for patients. Therefore, we aimed to generate synthetic fluid-attenuated inversion recovery (FLAIR) images from 18 F-FDG PET and CT images of the human brain using a generative adversarial network (GAN)–based deep learning framework called the CypixGAN, which combined the CycleGAN framework with the L1 loss function of the pix2pix. Patients and Methods Data from 143 patients who underwent PET/CT and MRI were used for training (n = 79), validation (n = 20), and testing (n = 44) the deep learning frameworks. Synthetic FLAIR images were generated using the pix2pix, CycleGAN, and CypixGAN, and white matter hyperintensities (WMHs) were then segmented. The performance of CypixGAN was compared with that of the other frameworks. Results The CypixGAN outperformed the pix2pix and CycleGAN in generating synthetic FLAIR images with superior visual quality. Peak signal-to-noise ratio and structural similarity index (mean ± standard deviation) estimated using the CypixGAN (20.23 ± 1.31 and 0.80 ± 0.02, respectively) were significantly higher than those estimated using the pix2pix (19.35 ± 1.43 and 0.79 ± 0.02, respectively) and CycleGAN (18.74 ± 1.49 and 0.78 ± 0.02, respectively) ( P < 0.001). WMHs in synthetic FLAIR images generated using the CypixGAN closely resembled those in ground-truth images, as indicated by the low absolute percentage volume differences and high dice similarity coefficients. Conclusions The CypixGAN generated high-quality FLAIR images owing to the preservation of spatial information despite using unpaired images. This framework may help improve diagnostic performance and cost-effectiveness of PET/CT when MRI scan is unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
王地黄发布了新的文献求助100
4秒前
无花果应助小东采纳,获得10
4秒前
无花果应助小巧谷波采纳,获得10
6秒前
AXXXin发布了新的文献求助10
6秒前
爆米花应助hahaha采纳,获得10
7秒前
7秒前
小二郎应助杨佳睿采纳,获得10
8秒前
Kz发布了新的文献求助10
11秒前
大个应助叶强采纳,获得10
12秒前
小凉完成签到 ,获得积分10
12秒前
13秒前
陈一完成签到,获得积分10
14秒前
聪明白开水关注了科研通微信公众号
14秒前
14秒前
汉堡包应助科研狗采纳,获得10
14秒前
16秒前
17秒前
18秒前
18秒前
小果叮发布了新的文献求助10
20秒前
21秒前
jiangjiang完成签到 ,获得积分10
21秒前
CipherSage应助叶文轩采纳,获得30
21秒前
22秒前
23秒前
叶强发布了新的文献求助10
24秒前
Lz0330发布了新的文献求助20
25秒前
25秒前
李三金嘻嘻完成签到,获得积分10
26秒前
wyy完成签到,获得积分20
26秒前
小东发布了新的文献求助10
27秒前
叶文轩完成签到,获得积分10
28秒前
DE2022发布了新的文献求助10
28秒前
00完成签到,获得积分10
28秒前
无私的含海完成签到,获得积分10
29秒前
爆米花应助橙汁采纳,获得10
29秒前
汉堡包应助Steven采纳,获得10
29秒前
AXXXin完成签到,获得积分10
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502715
关于积分的说明 11109873
捐赠科研通 3233579
什么是DOI,文献DOI怎么找? 1787443
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152