Cross-Modality Image Translation From Brain 18F-FDG PET/CT Images to Fluid-Attenuated Inversion Recovery Images Using the CypixGAN Framework

流体衰减反转恢复 正电子发射断层摄影术 人工智能 核医学 模式识别(心理学) 神经影像学 相似性(几何) 磁共振成像 图像质量 医学 计算机科学 放射科 图像(数学) 精神科
作者
Sangwon Lee,Jin Ho Jung,Yong Choi,Eunyeong Seok,Jiwoong Jung,Hyunkeong Lim,Dongwoo Kim,Mijin Yun
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/rlu.0000000000005441
摘要

Purpose PET/CT and MRI can accurately diagnose dementia but are expensive and inconvenient for patients. Therefore, we aimed to generate synthetic fluid-attenuated inversion recovery (FLAIR) images from 18 F-FDG PET and CT images of the human brain using a generative adversarial network (GAN)–based deep learning framework called the CypixGAN, which combined the CycleGAN framework with the L1 loss function of the pix2pix. Patients and Methods Data from 143 patients who underwent PET/CT and MRI were used for training (n = 79), validation (n = 20), and testing (n = 44) the deep learning frameworks. Synthetic FLAIR images were generated using the pix2pix, CycleGAN, and CypixGAN, and white matter hyperintensities (WMHs) were then segmented. The performance of CypixGAN was compared with that of the other frameworks. Results The CypixGAN outperformed the pix2pix and CycleGAN in generating synthetic FLAIR images with superior visual quality. Peak signal-to-noise ratio and structural similarity index (mean ± standard deviation) estimated using the CypixGAN (20.23 ± 1.31 and 0.80 ± 0.02, respectively) were significantly higher than those estimated using the pix2pix (19.35 ± 1.43 and 0.79 ± 0.02, respectively) and CycleGAN (18.74 ± 1.49 and 0.78 ± 0.02, respectively) ( P < 0.001). WMHs in synthetic FLAIR images generated using the CypixGAN closely resembled those in ground-truth images, as indicated by the low absolute percentage volume differences and high dice similarity coefficients. Conclusions The CypixGAN generated high-quality FLAIR images owing to the preservation of spatial information despite using unpaired images. This framework may help improve diagnostic performance and cost-effectiveness of PET/CT when MRI scan is unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
EV发布了新的文献求助10
3秒前
6秒前
科研通AI5应助boom采纳,获得10
8秒前
YYYYYY完成签到,获得积分10
9秒前
9秒前
暴躁的丝完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
zzzzzzzzzzzzb完成签到,获得积分10
16秒前
16秒前
16秒前
帝蒼完成签到,获得积分10
16秒前
17秒前
柠橙完成签到,获得积分10
18秒前
张贵川完成签到 ,获得积分10
19秒前
科研通AI6应助执着烧鹅采纳,获得10
19秒前
加油发布了新的文献求助50
20秒前
12完成签到,获得积分10
20秒前
张德帅完成签到,获得积分10
20秒前
boom发布了新的文献求助10
21秒前
呆萌的大炮完成签到,获得积分10
21秒前
pia叽完成签到 ,获得积分10
21秒前
caichengyu发布了新的文献求助10
21秒前
酷波er应助高高的网络采纳,获得10
24秒前
ding应助缓慢含烟采纳,获得10
24秒前
照亮世界的ay完成签到,获得积分10
26秒前
26秒前
26秒前
脑洞疼应助caichengyu采纳,获得10
28秒前
nikonikoni完成签到,获得积分10
28秒前
28秒前
boom完成签到,获得积分10
28秒前
Lynsey完成签到,获得积分10
29秒前
Huang发布了新的文献求助10
31秒前
amy发布了新的文献求助10
31秒前
32秒前
33秒前
诸葛藏藏完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073428
求助须知:如何正确求助?哪些是违规求助? 4293518
关于积分的说明 13378782
捐赠科研通 4114951
什么是DOI,文献DOI怎么找? 2253260
邀请新用户注册赠送积分活动 1258050
关于科研通互助平台的介绍 1190911