Cross-Modality Image Translation From Brain 18F-FDG PET/CT Images to Fluid-Attenuated Inversion Recovery Images Using the CypixGAN Framework

流体衰减反转恢复 正电子发射断层摄影术 人工智能 核医学 模式识别(心理学) 神经影像学 相似性(几何) 磁共振成像 图像质量 医学 计算机科学 放射科 图像(数学) 精神科
作者
Sangwon Lee,Jin Ho Jung,Yong Choi,Eunyeong Seok,Jiwoong Jung,Hyunkeong Lim,Dongwoo Kim,Mijin Yun
出处
期刊:Clinical Nuclear Medicine [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rlu.0000000000005441
摘要

Purpose PET/CT and MRI can accurately diagnose dementia but are expensive and inconvenient for patients. Therefore, we aimed to generate synthetic fluid-attenuated inversion recovery (FLAIR) images from 18 F-FDG PET and CT images of the human brain using a generative adversarial network (GAN)–based deep learning framework called the CypixGAN, which combined the CycleGAN framework with the L1 loss function of the pix2pix. Patients and Methods Data from 143 patients who underwent PET/CT and MRI were used for training (n = 79), validation (n = 20), and testing (n = 44) the deep learning frameworks. Synthetic FLAIR images were generated using the pix2pix, CycleGAN, and CypixGAN, and white matter hyperintensities (WMHs) were then segmented. The performance of CypixGAN was compared with that of the other frameworks. Results The CypixGAN outperformed the pix2pix and CycleGAN in generating synthetic FLAIR images with superior visual quality. Peak signal-to-noise ratio and structural similarity index (mean ± standard deviation) estimated using the CypixGAN (20.23 ± 1.31 and 0.80 ± 0.02, respectively) were significantly higher than those estimated using the pix2pix (19.35 ± 1.43 and 0.79 ± 0.02, respectively) and CycleGAN (18.74 ± 1.49 and 0.78 ± 0.02, respectively) ( P < 0.001). WMHs in synthetic FLAIR images generated using the CypixGAN closely resembled those in ground-truth images, as indicated by the low absolute percentage volume differences and high dice similarity coefficients. Conclusions The CypixGAN generated high-quality FLAIR images owing to the preservation of spatial information despite using unpaired images. This framework may help improve diagnostic performance and cost-effectiveness of PET/CT when MRI scan is unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助雨水采纳,获得10
刚刚
刚刚
刚刚
gszy1975完成签到,获得积分10
刚刚
魁梧的雨双完成签到,获得积分10
1秒前
1秒前
南瓜气气完成签到,获得积分10
1秒前
nana完成签到,获得积分10
1秒前
2秒前
云瑾应助腼腆的老虎采纳,获得20
3秒前
3秒前
3秒前
祝英台完成签到 ,获得积分10
3秒前
ste11ar完成签到,获得积分10
4秒前
jay发布了新的文献求助10
4秒前
sdysdbd发布了新的文献求助30
4秒前
feijelly完成签到,获得积分10
5秒前
Rahul完成签到,获得积分10
5秒前
灵巧擎汉发布了新的文献求助10
7秒前
xiaotianli完成签到,获得积分10
7秒前
happiness发布了新的文献求助20
7秒前
NexusExplorer应助1123432412采纳,获得10
7秒前
休思完成签到 ,获得积分10
8秒前
丘比特应助musei采纳,获得10
8秒前
8秒前
laoxie301发布了新的文献求助10
9秒前
李大龙发布了新的文献求助10
9秒前
师桐完成签到,获得积分10
10秒前
jay完成签到,获得积分10
11秒前
研友_8K2QJZ发布了新的文献求助50
11秒前
无情的聋五完成签到,获得积分10
11秒前
11秒前
sdysdbd完成签到,获得积分10
14秒前
合一海盗完成签到,获得积分10
14秒前
orixero应助iuv采纳,获得10
15秒前
16秒前
科研通AI2S应助无情的聋五采纳,获得10
16秒前
curtisness应助平常的四娘采纳,获得10
17秒前
失眠的血茗完成签到,获得积分10
17秒前
ironsilica发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023