Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things

异常检测 计算机科学 时间序列 变压器 离群值 图形 数据挖掘 人工智能 机器学习 理论计算机科学 工程类 电压 电气工程
作者
Mengmeng Zhao,Haipeng Peng,Lixiang Li,Yeqing Ren
出处
期刊:Computers, materials & continua 卷期号:80 (2): 2815-2837
标识
DOI:10.32604/cmc.2024.053765
摘要

In the Industrial Internet of Things (IIoT), sensors generate time series data to reflect the working state. When the systems are attacked, timely identification of outliers in time series is critical to ensure security. Although many anomaly detection methods have been proposed, the temporal correlation of the time series over the same sensor and the state (spatial) correlation between different sensors are rarely considered simultaneously in these methods. Owing to the superior capability of Transformer in learning time series features. This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer. Additionally, the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module, which are interdependent. However, in the initial phase of training, since neither of the modules has reached an optimal state, their performance may influence each other. This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module. This interdependence between the modules, coupled with the initial instability, may cause the model to find it hard to find the optimal solution during the training process, resulting in unsatisfactory results. We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure. Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助Jcer采纳,获得10
刚刚
周小鱼发布了新的文献求助10
刚刚
李依伊完成签到,获得积分10
1秒前
左丘傲菡发布了新的文献求助10
1秒前
1秒前
猪猪hero发布了新的文献求助10
1秒前
kyJYbs完成签到,获得积分10
1秒前
xiaoyaoyou351完成签到,获得积分10
1秒前
豆丁小猫发布了新的文献求助10
2秒前
2秒前
2秒前
nana发布了新的文献求助10
2秒前
量好洗发布了新的文献求助10
3秒前
我不李姐完成签到,获得积分10
3秒前
雪.发布了新的文献求助10
3秒前
cz发布了新的文献求助30
4秒前
ZHY2023发布了新的文献求助10
4秒前
4秒前
adre完成签到,获得积分10
4秒前
4秒前
kingwill应助shijiaoshou采纳,获得20
5秒前
甜的桃子发布了新的文献求助10
5秒前
柠檬酸钠完成签到,获得积分10
5秒前
6秒前
陈民完成签到,获得积分10
6秒前
Z1987完成签到,获得积分10
7秒前
赘婿应助Jasmine采纳,获得10
7秒前
OKC完成签到,获得积分10
7秒前
xiaodao发布了新的文献求助10
7秒前
8秒前
8秒前
强强哥发布了新的文献求助10
8秒前
和谐的寒安完成签到 ,获得积分10
9秒前
9秒前
9秒前
夕痕完成签到,获得积分10
9秒前
knmno2应助丁凛采纳,获得10
10秒前
万元帅完成签到 ,获得积分10
10秒前
11秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441016
求助须知:如何正确求助?哪些是违规求助? 3037387
关于积分的说明 8968794
捐赠科研通 2725927
什么是DOI,文献DOI怎么找? 1495136
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687879