A new method to extract coal-covered area in open-pit mine based on remote sensing

煤矿开采 环境科学 遥感 像素 科恩卡帕 采矿工程 萃取(化学) 植被(病理学) 归一化差异植被指数 土壤科学 地质学 计算机科学 数学 统计 地理 人工智能 医学 化学 海洋学 考古 色谱法 病理 气候变化
作者
He Xin,Zhang Fei,C.Y. Jim,Ngai Weng Chan,Mou Leong Tan,Jingchao Shi
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (17): 5901-5916
标识
DOI:10.1080/01431161.2024.2382846
摘要

Coal is a prominent energy resource in China. Therefore, it is crucial to accurately extract the coal-covered areas. Taking Xinjiang's Zhundong mining region as the study area, Landsat 8 OLI data were employed to assess the spectral curves of four typical ground objects, including vegetation, bare land, water body and bare coal. The Normalized Difference Bare Coal Index (NDBCI) and the Normalized Difference Coal Index (NDCI) were developed to extract coal-covered area. Higher-resolution Sentinel-2B data for the same period were used for verification, with extraction accuracy evaluated by five metrics including Kappa coefficient, Overall accuracy, Checking accuracy, Checking completeness and F1-score. The results of extracting coal-covered areas showed that (1) the NDBCI showed 'internal fragmentation' and the NDCI demonstrated 'pixel overflow' during the extraction process. Therefore, we determined the optimal thresholds −0.03 for NDBCI and 0.04 for NDCI. (2) NDBCI distinguished pixels with lower grey-scale values, such as water body, road and gangue. However, some dump zones and shed patches were misclassified. (3) NDCI generated clear boundaries and more complete interiors, and the dump zone and shed could be distinguished. However, some water body parts were misclassified as coal-covered areas. (4) Combined application of NDBCI and NDCI generated a 'complementary' effect better than both individual modes. Kappa coefficient, Overall accuracy and F1-score reached 0.95, 98.76% and 0.75, respectively. This study successfully extracted coal-covered areas by developing a remote sensing index based on spectral traits and a priori knowledge of the study area. The proposed combined extraction mode achieved high accuracy for rapid and reliable identification of coal-covered areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望能成为一名科研女强人完成签到,获得积分10
刚刚
亦久完成签到 ,获得积分10
1秒前
KK发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
乐于助人大好人完成签到 ,获得积分10
3秒前
4秒前
我是老大应助混知采纳,获得10
4秒前
愉快的千风完成签到,获得积分10
4秒前
5秒前
5秒前
Crossover发布了新的文献求助10
6秒前
你不知道完成签到 ,获得积分10
6秒前
6秒前
Manta完成签到,获得积分10
6秒前
疯了半天完成签到,获得积分10
6秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
jjjiiii完成签到,获得积分20
8秒前
王梓磬发布了新的文献求助10
8秒前
8秒前
9秒前
wanci应助快乐柴柴采纳,获得10
9秒前
狠毒的小龙虾完成签到,获得积分10
9秒前
可爱的函函应助Electra采纳,获得10
9秒前
研友_LJblvL完成签到 ,获得积分10
9秒前
欣慰宛筠完成签到 ,获得积分10
10秒前
旅顺口老李完成签到 ,获得积分10
10秒前
章紫完成签到 ,获得积分10
11秒前
11秒前
yy完成签到,获得积分10
11秒前
科目三应助2041采纳,获得10
11秒前
姜姜完成签到,获得积分10
11秒前
11秒前
h w wang发布了新的文献求助30
12秒前
polofly完成签到,获得积分10
12秒前
YUYUYU应助你还要猫怎样采纳,获得30
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567