Adaptive control for circulating cooling water system using deep reinforcement learning

控制理论(社会学) PID控制器 计算机科学 强化学习 控制系统 弹道 马尔可夫决策过程 马尔可夫过程 温度控制 控制工程 数学 物理 控制(管理) 工程类 人工智能 统计 天文 电气工程
作者
Jin Xu,Li Han,Qingxin Zhang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (7): e0307767-e0307767 被引量:1
标识
DOI:10.1371/journal.pone.0307767
摘要

Due to the complex internal working process of circulating cooling water systems, most traditional control methods struggle to achieve stable and precise control. Therefore, this paper presents a novel adaptive control structure for the Twin Delayed Deep Deterministic Policy Gradient algorithm, which is based on a reference trajectory model (TD3-RTM). The structure is based on the Markov decision process of the recirculating cooling water system. Initially, the TD3 algorithm is employed to construct a deep reinforcement learning agent. Subsequently, a state space is selected, and a dense reward function is designed, considering the multivariable characteristics of the recirculating cooling water system. The agent updates its network based on different reward values obtained through interactions with the system, thereby gradually aligning the action values with the optimal policy. The TD3-RTM method introduces a reference trajectory model to accelerate the convergence speed of the agent and reduce oscillations and instability in the control system. Subsequently, simulation experiments were conducted in MATLAB/Simulink. The results show that compared to PID, fuzzy PID, DDPG and TD3, the TD3-RTM method improved the transient time in the flow loop by 6.09s, 5.29s, 0.57s, and 0.77s, respectively, and the Integral of Absolute Error(IAE) indexes decreased by 710.54, 335.1, 135.97, and 89.96, respectively, and the transient time in the temperature loop improved by 25.84s, 13.65s, 15.05s, and 0.81s, and the IAE metrics were reduced by 143.9, 59.13, 31.79, and 1.77, respectively. In addition, the overshooting of the TD3-RTM method in the flow loop was reduced by 17.64, 7.79, and 1.29 per cent, respectively, in comparison with the PID, the fuzzy PID, and the TD3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ducksean完成签到,获得积分20
1秒前
小二郎应助HeAuBook采纳,获得10
1秒前
princess发布了新的文献求助10
1秒前
ceeray23应助banono采纳,获得10
1秒前
cslghe发布了新的文献求助10
2秒前
2秒前
3秒前
信你个鬼完成签到,获得积分10
3秒前
田様应助fcyyc采纳,获得10
3秒前
在水一方应助我爱陶子采纳,获得10
4秒前
苹果洋葱完成签到,获得积分10
4秒前
4秒前
4秒前
CAESAR完成签到 ,获得积分10
4秒前
同城代打发布了新的文献求助10
5秒前
香蕉觅云应助vivi采纳,获得10
5秒前
SciGPT应助正正采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
酷波er应助echo采纳,获得10
7秒前
华仔发布了新的文献求助10
7秒前
7秒前
在水一方应助科研狗采纳,获得10
8秒前
9秒前
陌上完成签到,获得积分10
9秒前
小猪完成签到,获得积分10
9秒前
masterwill发布了新的文献求助10
10秒前
10秒前
10秒前
zhonglv7发布了新的文献求助10
10秒前
10秒前
fcyyc完成签到,获得积分10
11秒前
11秒前
Owen应助糊涂的天晴采纳,获得10
11秒前
asdfzxcv应助科研通管家采纳,获得30
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
wy.he应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407