Adaptive control for circulating cooling water system using deep reinforcement learning

控制理论(社会学) PID控制器 计算机科学 强化学习 控制系统 弹道 马尔可夫决策过程 马尔可夫过程 温度控制 控制工程 数学 物理 控制(管理) 工程类 人工智能 统计 电气工程 天文
作者
Jin Xu,Li Han,Qingxin Zhang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (7): e0307767-e0307767 被引量:1
标识
DOI:10.1371/journal.pone.0307767
摘要

Due to the complex internal working process of circulating cooling water systems, most traditional control methods struggle to achieve stable and precise control. Therefore, this paper presents a novel adaptive control structure for the Twin Delayed Deep Deterministic Policy Gradient algorithm, which is based on a reference trajectory model (TD3-RTM). The structure is based on the Markov decision process of the recirculating cooling water system. Initially, the TD3 algorithm is employed to construct a deep reinforcement learning agent. Subsequently, a state space is selected, and a dense reward function is designed, considering the multivariable characteristics of the recirculating cooling water system. The agent updates its network based on different reward values obtained through interactions with the system, thereby gradually aligning the action values with the optimal policy. The TD3-RTM method introduces a reference trajectory model to accelerate the convergence speed of the agent and reduce oscillations and instability in the control system. Subsequently, simulation experiments were conducted in MATLAB/Simulink. The results show that compared to PID, fuzzy PID, DDPG and TD3, the TD3-RTM method improved the transient time in the flow loop by 6.09s, 5.29s, 0.57s, and 0.77s, respectively, and the Integral of Absolute Error(IAE) indexes decreased by 710.54, 335.1, 135.97, and 89.96, respectively, and the transient time in the temperature loop improved by 25.84s, 13.65s, 15.05s, and 0.81s, and the IAE metrics were reduced by 143.9, 59.13, 31.79, and 1.77, respectively. In addition, the overshooting of the TD3-RTM method in the flow loop was reduced by 17.64, 7.79, and 1.29 per cent, respectively, in comparison with the PID, the fuzzy PID, and the TD3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助san采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
香菜完成签到,获得积分10
7秒前
小舟完成签到,获得积分10
10秒前
雪白凤发布了新的文献求助10
11秒前
Muse应助榴莲采纳,获得10
12秒前
12秒前
13秒前
完美世界应助zhaochenyu采纳,获得10
14秒前
14秒前
自信的又柔完成签到,获得积分10
14秒前
16秒前
san发布了新的文献求助10
18秒前
wanci应助凯凯采纳,获得10
18秒前
19秒前
lucia5354完成签到,获得积分10
19秒前
炼金术士完成签到,获得积分10
19秒前
好好学习发布了新的文献求助20
19秒前
SteveRogers发布了新的文献求助10
20秒前
20秒前
24秒前
24秒前
25秒前
赘婿应助ZZDXXX采纳,获得10
27秒前
白桃小罐头完成签到,获得积分10
30秒前
31秒前
一条蛆发布了新的文献求助10
31秒前
32秒前
33秒前
CipherSage应助castleman采纳,获得30
36秒前
36秒前
凯凯发布了新的文献求助10
36秒前
阔达的香之应助可爱路人采纳,获得10
38秒前
40秒前
lll222发布了新的文献求助200
40秒前
19应助在水一方采纳,获得200
42秒前
小呆瓜与鱼完成签到 ,获得积分10
43秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643531
捐赠科研通 2650290
什么是DOI,文献DOI怎么找? 1451228
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661447