Adaptive control for circulating cooling water system using deep reinforcement learning

控制理论(社会学) PID控制器 计算机科学 强化学习 控制系统 弹道 马尔可夫决策过程 马尔可夫过程 温度控制 控制工程 数学 物理 控制(管理) 工程类 人工智能 统计 天文 电气工程
作者
Jin Xu,Li Han,Qingxin Zhang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (7): e0307767-e0307767 被引量:1
标识
DOI:10.1371/journal.pone.0307767
摘要

Due to the complex internal working process of circulating cooling water systems, most traditional control methods struggle to achieve stable and precise control. Therefore, this paper presents a novel adaptive control structure for the Twin Delayed Deep Deterministic Policy Gradient algorithm, which is based on a reference trajectory model (TD3-RTM). The structure is based on the Markov decision process of the recirculating cooling water system. Initially, the TD3 algorithm is employed to construct a deep reinforcement learning agent. Subsequently, a state space is selected, and a dense reward function is designed, considering the multivariable characteristics of the recirculating cooling water system. The agent updates its network based on different reward values obtained through interactions with the system, thereby gradually aligning the action values with the optimal policy. The TD3-RTM method introduces a reference trajectory model to accelerate the convergence speed of the agent and reduce oscillations and instability in the control system. Subsequently, simulation experiments were conducted in MATLAB/Simulink. The results show that compared to PID, fuzzy PID, DDPG and TD3, the TD3-RTM method improved the transient time in the flow loop by 6.09s, 5.29s, 0.57s, and 0.77s, respectively, and the Integral of Absolute Error(IAE) indexes decreased by 710.54, 335.1, 135.97, and 89.96, respectively, and the transient time in the temperature loop improved by 25.84s, 13.65s, 15.05s, and 0.81s, and the IAE metrics were reduced by 143.9, 59.13, 31.79, and 1.77, respectively. In addition, the overshooting of the TD3-RTM method in the flow loop was reduced by 17.64, 7.79, and 1.29 per cent, respectively, in comparison with the PID, the fuzzy PID, and the TD3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助小九爱喝冰美式采纳,获得10
刚刚
李健的小迷弟应助SheepIce采纳,获得30
1秒前
yian007发布了新的文献求助20
2秒前
YamDaamCaa应助菠菜采纳,获得100
2秒前
魔飞发布了新的文献求助10
3秒前
3秒前
3秒前
yukang完成签到,获得积分10
4秒前
4秒前
司徒文青应助Lucas采纳,获得30
4秒前
5秒前
羊羊羊发布了新的文献求助10
6秒前
hoijuon发布了新的文献求助30
6秒前
LILING完成签到,获得积分10
6秒前
8秒前
小熊座a发布了新的文献求助10
8秒前
科目三应助蓦然回首采纳,获得200
8秒前
九妹发布了新的文献求助10
8秒前
summer完成签到,获得积分10
9秒前
爆米花应助伯赏松思采纳,获得10
9秒前
沉静的蜗牛完成签到,获得积分10
9秒前
林宥嘉完成签到,获得积分10
10秒前
10秒前
思源应助科研顺采纳,获得10
10秒前
1234发布了新的文献求助10
11秒前
黄黄完成签到,获得积分20
11秒前
summer发布了新的文献求助10
12秒前
爆米花应助CQ采纳,获得30
12秒前
嘉的科研发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
14秒前
orixero应助黄黄采纳,获得10
15秒前
16秒前
桐桐应助笑点低寒凡采纳,获得10
16秒前
16秒前
17秒前
小熊座a完成签到,获得积分10
18秒前
LaTeXer应助七月的July采纳,获得30
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970004
求助须知:如何正确求助?哪些是违规求助? 3514701
关于积分的说明 11175468
捐赠科研通 3250051
什么是DOI,文献DOI怎么找? 1795187
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804925