Adaptive control for circulating cooling water system using deep reinforcement learning

控制理论(社会学) PID控制器 计算机科学 强化学习 控制系统 弹道 马尔可夫决策过程 马尔可夫过程 温度控制 控制工程 数学 物理 控制(管理) 工程类 人工智能 统计 天文 电气工程
作者
Jin Xu,Li Han,Qingxin Zhang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (7): e0307767-e0307767 被引量:1
标识
DOI:10.1371/journal.pone.0307767
摘要

Due to the complex internal working process of circulating cooling water systems, most traditional control methods struggle to achieve stable and precise control. Therefore, this paper presents a novel adaptive control structure for the Twin Delayed Deep Deterministic Policy Gradient algorithm, which is based on a reference trajectory model (TD3-RTM). The structure is based on the Markov decision process of the recirculating cooling water system. Initially, the TD3 algorithm is employed to construct a deep reinforcement learning agent. Subsequently, a state space is selected, and a dense reward function is designed, considering the multivariable characteristics of the recirculating cooling water system. The agent updates its network based on different reward values obtained through interactions with the system, thereby gradually aligning the action values with the optimal policy. The TD3-RTM method introduces a reference trajectory model to accelerate the convergence speed of the agent and reduce oscillations and instability in the control system. Subsequently, simulation experiments were conducted in MATLAB/Simulink. The results show that compared to PID, fuzzy PID, DDPG and TD3, the TD3-RTM method improved the transient time in the flow loop by 6.09s, 5.29s, 0.57s, and 0.77s, respectively, and the Integral of Absolute Error(IAE) indexes decreased by 710.54, 335.1, 135.97, and 89.96, respectively, and the transient time in the temperature loop improved by 25.84s, 13.65s, 15.05s, and 0.81s, and the IAE metrics were reduced by 143.9, 59.13, 31.79, and 1.77, respectively. In addition, the overshooting of the TD3-RTM method in the flow loop was reduced by 17.64, 7.79, and 1.29 per cent, respectively, in comparison with the PID, the fuzzy PID, and the TD3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
随机游动完成签到,获得积分10
2秒前
sci_porn发布了新的文献求助10
2秒前
勤劳的鸡发布了新的文献求助10
2秒前
完美世界应助GOW采纳,获得10
2秒前
马力完成签到,获得积分10
3秒前
高挑的一手完成签到,获得积分10
3秒前
3秒前
灌灌灌灌发布了新的文献求助10
3秒前
4秒前
布鲁爱思发布了新的文献求助10
4秒前
wangshibing发布了新的文献求助10
4秒前
上官若男应助李大了采纳,获得10
4秒前
科研通AI2S应助xuan采纳,获得10
5秒前
无奈行恶应助tigger采纳,获得30
5秒前
衬衣范发布了新的文献求助10
6秒前
乐观的幼珊完成签到,获得积分10
7秒前
byron关注了科研通微信公众号
7秒前
8秒前
无花果应助王玄琳采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
11秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SciGPT应助欣欣子采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
didi发布了新的文献求助10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得30
12秒前
大个应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974779
求助须知:如何正确求助?哪些是违规求助? 3519193
关于积分的说明 11197417
捐赠科研通 3255311
什么是DOI,文献DOI怎么找? 1797760
邀请新用户注册赠送积分活动 877150
科研通“疑难数据库(出版商)”最低求助积分说明 806187