Using machine learning to unveil the predictors of intergenerational mobility

经济 新古典经济学
作者
Luís Clemente‐Casinhas,Alexandra Ferreira‐Lopes,Luís F. Martins
出处
期刊:Review of Income and Wealth [Wiley]
标识
DOI:10.1111/roiw.12710
摘要

We assess the predictors of intergenerational mobility in income and education for a sample of 137 countries, between 1960 and 2018, using the World Bank's Global Database on Intergenerational Mobility (GDIM). The Rigorous LASSO and the Random Forest and Gradient Boosting algorithms are considered, to avoid the consequences of an ad‐hoc model selection in our high dimensionality context. We obtain variable importance plots and analyze the relationships between mobility and its predictors through Shapley values. Results show that intergenerational income mobility is expected to be positively predicted by the parental average education, the share of married individuals and negatively predicted by the share of children that have completed less than primary education, the growth rate of population density, and inequality. Mobility in education is expected to have a positive relationship with the adult literacy, government expenditures on primary education, and the stock of migrants. The unemployment and poverty rates matter for income mobility, although the direction of their relationship is not clear. The same occurs for education mobility and the growth rate of real GDP per capita , the degree of urbanization, the share of female population, and income mobility. Income mobility is found to be greater for the 1960s cohort. Countries belonging to the Latin America and Caribbean region present lower mobility in income and education. We find a positive relationship between predicted income mobility and observed mobility in education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的枫叶完成签到,获得积分10
刚刚
123应助来自天边云彩采纳,获得20
1秒前
1秒前
Xu发布了新的文献求助10
2秒前
中村優夏完成签到,获得积分10
2秒前
高兴的安阳完成签到,获得积分10
2秒前
Jasper应助贺知什么书采纳,获得10
2秒前
2秒前
大大小小完成签到,获得积分10
3秒前
3秒前
机智的傲白应助鳗鱼雁开采纳,获得10
3秒前
xinxin完成签到,获得积分10
3秒前
4秒前
4秒前
wanci应助典雅的俊驰采纳,获得10
4秒前
5秒前
王春起完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
夏木刚睡醒完成签到,获得积分10
7秒前
7秒前
萧水白应助丙烯酸树脂采纳,获得10
7秒前
tony发布了新的文献求助50
7秒前
8秒前
chenchen完成签到 ,获得积分10
8秒前
8秒前
深情安青应助无奈的语风采纳,获得10
9秒前
来自天边云彩完成签到,获得积分20
9秒前
Lucas应助牙鸟采纳,获得10
9秒前
彭于晏应助YBOH采纳,获得10
9秒前
鱼柒完成签到 ,获得积分10
10秒前
mjr发布了新的文献求助30
10秒前
简单文博发布了新的文献求助10
10秒前
10秒前
xinxin发布了新的文献求助10
11秒前
万能图书馆应助酷酷妙梦采纳,获得10
11秒前
11秒前
11秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299266
求助须知:如何正确求助?哪些是违规求助? 2934183
关于积分的说明 8467773
捐赠科研通 2607652
什么是DOI,文献DOI怎么找? 1423827
科研通“疑难数据库(出版商)”最低求助积分说明 661704
邀请新用户注册赠送积分活动 645391