Form-finding of tensegrity structures based on graph neural networks

张拉整体 结构工程 计算机科学 人工神经网络 图形 工程类 人工智能 理论计算机科学
作者
Shoufei Shao,Maozu Guo,Ailin Zhang,Yanxia Zhang,Yanan Li,Zhuoxuan Li
出处
期刊:Advances in Structural Engineering [SAGE]
标识
DOI:10.1177/13694332241276051
摘要

Tensegrity structures, characterized by enhanced stiffness, slender struts, and superior buckling resistance, have found wide-ranging applications in fields such as engineering, architecture, art, biology, and robotics, attracting extensive attention from researchers. The form-finding process, a critical step in the design of tensegrity structures, aims to discover the self-equilibrated configuration that satisfies specific design requirements. Traditional form-finding methods based on force density often require repeated steps of eigenvalue decomposition and singular value decomposition, making the process complex. In contrast, this paper introduces a new intelligent form-finding algorithm that uses the force density method and combines the Coati optimization algorithm with Graph Neural Networks. This algorithm avoids the complex steps of eigenvalue and singular value decomposition and integrates the physical knowledge of the structure, making the form-finding process faster and more accurate. In this algorithm, various force densities are initially randomized and input into a trained Graph Neural Networks to predict a fitness function’s value. Through optimizing the constrained fitness function, the algorithm determines the appropriate structural force density and coordinates, thereby completing the form-finding process of the structure. The paper presents seven typical tensegrity structure examples and compares various form-finding methods. The results of numerical examples show that the method proposed in this paper can find solutions that align with the super-stable line more quickly and accurately, demonstrating its potential value in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HMZ完成签到,获得积分10
1秒前
研友_LkYKJZ完成签到,获得积分10
1秒前
田様应助Khr1stINK采纳,获得10
1秒前
1秒前
风趣夜云完成签到,获得积分10
2秒前
2秒前
真实的一鸣完成签到,获得积分10
2秒前
调研昵称发布了新的文献求助50
3秒前
4秒前
yKkkkkk发布了新的文献求助10
4秒前
怎么可能会凉完成签到 ,获得积分10
5秒前
7秒前
7秒前
大大完成签到,获得积分10
8秒前
8秒前
8秒前
Xiaoxiao应助greenPASS666采纳,获得10
8秒前
现代的秋白完成签到,获得积分10
8秒前
从容的盼晴完成签到,获得积分10
8秒前
scvrl完成签到,获得积分10
9秒前
9秒前
楼寒天发布了新的文献求助10
9秒前
请叫我风吹麦浪应助C2采纳,获得10
11秒前
xlj发布了新的文献求助10
11秒前
11秒前
迷路白桃完成签到,获得积分10
12秒前
kento发布了新的文献求助30
12秒前
眯眯眼的衬衫应助yKkkkkk采纳,获得10
12秒前
小豆包科研冲刺者完成签到,获得积分10
12秒前
黄饱饱完成签到,获得积分10
13秒前
13秒前
传奇3应助CO2采纳,获得10
14秒前
15秒前
称心乐枫完成签到,获得积分10
16秒前
16秒前
22发布了新的文献求助10
16秒前
berry发布了新的文献求助10
16秒前
kingmin应助毛慢慢采纳,获得10
17秒前
完美世界应助顺利鱼采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808