A review on rhodamine probes for metal ion recognition with a future on artificial intelligence and machine learning

罗丹明 化学 罗丹明B 水溶液中的金属离子 纳米技术 组合化学 离子 人工智能 计算机科学 荧光 有机化学 材料科学 量子力学 光催化 物理 催化作用
作者
Devika Krishna Iyer,Aishwarya Shaji,Shourya Pratap Singh,Ananya Tripathi,Ananta Hazra,Shaswati Mandal,Pritam Ghosh
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:495: 215371-215371 被引量:22
标识
DOI:10.1016/j.ccr.2023.215371
摘要

Rhodamine based probes are well documented in literature as a host for detection of several guest analytes including metal ions. Metals are crucial elements in terms of biological, environmental, and/or industrial point of view- an optimum value of it within the media is thus necessary to maintain. Deficiency could lead to multiple disorders whereas excess could end up by malfunctioning the system. The detection of metal ions in various concentrations by rhodamine probes followed multiple mechanisms, one common pathway is opening the spirolactam ring within the rhodamine scaffold which leads to colorimetric and fluorometric signals. Rhodamine itself is less emissive and less colorful when the spirolactam ring is present within the framework and would become strongly emissive with versatile coloring range (red, orange or purple etc) once the ring is opened. To understand how the sensing occurs by the rhodamine probes in presence of metal ions, we have discussed more than 150 important rhodamine probes with almost all possible metal ions, pointing out several issues i.e., role of solvent, role of rhodamine moieties itself, role of side arm etc. Although scanty in daily life, we believe rhodamine probes could be an easy-instant-economic strategy for PoCT application to diagnose multiple diseases and could be operational without any trained personnel to establish lab-at-home. We want to use the available dataset based on rhodamine probes for fabrication of artificial intelligence and machine learning (AI-ML) based model that could be useful in future. We believe the review would support the researchers in this field as a ready reference by providing a wide range of datasets (structure, ions detected, medium, detection limit etc) along with fundamental AI-ML programming for future modelling purposes as AI-ML based models are being used by several researchers, towards protein engineering, cell penetrating peptide designing etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
weixun完成签到,获得积分10
1秒前
2秒前
3秒前
科研天才完成签到,获得积分10
4秒前
4秒前
传奇3应助小c采纳,获得10
5秒前
jk发布了新的文献求助50
5秒前
6秒前
yufanhui应助米儿采纳,获得10
6秒前
6秒前
爆米花应助耀学菜菜采纳,获得10
6秒前
8秒前
江风海韵完成签到,获得积分10
8秒前
orixero应助震震采纳,获得10
8秒前
彭于晏应助深情的元蝶采纳,获得10
9秒前
CipherSage应助科研天才采纳,获得10
9秒前
9秒前
酷酷的从梦完成签到,获得积分10
9秒前
怕黑的竺发布了新的文献求助10
10秒前
GXY发布了新的文献求助10
11秒前
简亓完成签到,获得积分10
11秒前
所所应助nice1334采纳,获得10
11秒前
wang发布了新的文献求助10
11秒前
13秒前
HU发布了新的文献求助10
13秒前
13秒前
balabala完成签到,获得积分10
13秒前
14秒前
14秒前
充电宝应助冷语采纳,获得10
14秒前
谢蟹完成签到,获得积分10
15秒前
Rachel完成签到,获得积分20
16秒前
17秒前
YUE关注了科研通微信公众号
18秒前
19秒前
白鹤发布了新的文献求助50
20秒前
写不出论文的垃圾完成签到 ,获得积分10
20秒前
20秒前
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542