超级电容器
材料科学
电极
纳米复合材料
电容
电化学
电解质
化学工程
复合数
纳米材料
电导率
纳米技术
比表面积
电流密度
复合材料
化学
有机化学
物理
物理化学
量子力学
工程类
催化作用
作者
Jagadeesh Ramadoss,Manoj Christopher Mariadass,Jeyadheepan Karuppasamy,S. Arumugam,Mani Govindasamy
标识
DOI:10.1021/acs.jpcc.3c04271
摘要
Ti3C2Tx is a 2D layered structure and a promising candidate for use as a working electrode material in electrochemical applications, similar to other 2D structured nanomaterials. Moreover, the surface of the Ti3C2Tx material carries a negative charge and, owing to the presence of surface functional groups, exhibits hydrophilic properties. This is due to the formation of hydrogen bonds between water molecules and Tx. A Ti3C2Tx/MoS2 composite was fabricated by using a hydrothermal approach. The composition of MoS2 in conjunction with Ti3C2Tx enhances the layered distance due to its synergetic effect. The electrode composition exhibits a significantly higher specific surface area of 34.2 m2/g–1 in comparison to that of the Ti3C2Tx electrode. A supercapacitor device based on Ti3C2Tx/MoS2 is primarily fabricated using a 1 M LiClO4 aqueous electrolyte. This prepared device achieves a high areal capacitance of 1227.2 F/cm2 at a scan rate of 5 mVs–1 with 90% capacitance retention over 4000 cycles at a current density of 10 A/g, indicating good energy storage capacity. The enhanced ionic conductivity of the composite electrode is compared to that of pure Ti3C2Tx. This research work presents an improved electrode layered structure for studying the electrochemical performance of Ti3C2Tx and Ti3C2Tx/MoS2 displays as well as their applications in supercapacitor devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI