Sparrow search algorithm with adaptive t distribution for multi-objective low-carbon multimodal transportation planning problem with fuzzy demand and fuzzy time

数学优化 计算机科学 模糊逻辑 区间(图论) 局部搜索(优化) 偏移量(计算机科学) 程序设计范式 算法 数学 人工智能 组合数学 程序设计语言
作者
Huizhen Zhang,Qin Huang,Liang Ma,Ziying Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122042-122042 被引量:15
标识
DOI:10.1016/j.eswa.2023.122042
摘要

In this paper, we present a multi-objective low-carbon multimodal transportation planning problem with fuzzy demand and fuzzy time (MOLCMTPP-FDFT) that minimizes both cost and time while incorporating mandatory carbon emission, carbon tax, carbon trading, and carbon offset policies. Chance constrained programming and interval programming are introduced to formulate the fuzzy demand chance constrained programming model and the fuzzy time interval programming model, respectively. Then, the mathematical model of uncertain MOLCMTPP-FDFT is transformed into a deterministic model. Based on the sparrow search algorithm, t distribution and the concept of Pareto optimality for multi-objective optimization, we also propose a solution strategy for the proposed model. In this algorithm, the number of iterations is used as the degree of freedom of - to update the sparrow location, which strikes a balance between the capabilities of global search and local search. Finally, the proposed algorithm and MOLCMTPP-FDFT are applied to a real case, resulting in a minimum cost of 260730.48 and a time duration of 13.044, which outperform the minimum cost of 268874.88 and minimum time of 18.32 obtained using single-mode transportation. The carbon emissions resulting from the lowest-cost solution obtained using single-mode transportation are 3,198.48, which are significantly more than the allowed emissions. Therefore, the proposed algorithm and mathematical model of MOLCMTPP-FDFT are valuable tools for optimizing multimodal transportation route. Additionally, the experimental results not only validate the superior efficiency and energy-saving benefits of the proposed multimodal transportation routes in comparison to the actual single-modal transportation, but also demonstrate the applicability of different low-carbon policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中华有为发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
4秒前
SUKI完成签到,获得积分10
4秒前
4秒前
5秒前
徐某人发布了新的文献求助10
5秒前
7秒前
迷路向松完成签到,获得积分10
7秒前
hao123发布了新的文献求助10
7秒前
深夜拿铁发布了新的文献求助10
8秒前
9秒前
科研通AI5应助NatureScience采纳,获得10
10秒前
你大夫哥发布了新的文献求助100
10秒前
搜集达人应助明理鞋子采纳,获得10
10秒前
司康完成签到,获得积分10
10秒前
科研通AI2S应助徐某人采纳,获得10
10秒前
法外潮湿宝贝完成签到 ,获得积分10
11秒前
emmaguo713发布了新的文献求助30
11秒前
12秒前
12秒前
13秒前
13秒前
JamesPei应助zz采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
KAP应助科研通管家采纳,获得30
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732073
求助须知:如何正确求助?哪些是违规求助? 3276483
关于积分的说明 9997274
捐赠科研通 2992006
什么是DOI,文献DOI怎么找? 1641986
邀请新用户注册赠送积分活动 780121
科研通“疑难数据库(出版商)”最低求助积分说明 748700