Sparrow search algorithm with adaptive t distribution for multi-objective low-carbon multimodal transportation planning problem with fuzzy demand and fuzzy time

数学优化 计算机科学 模糊逻辑 区间(图论) 局部搜索(优化) 偏移量(计算机科学) 程序设计范式 算法 数学 人工智能 组合数学 程序设计语言
作者
Huizhen Zhang,Qin Huang,Liang Ma,Ziying Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122042-122042 被引量:24
标识
DOI:10.1016/j.eswa.2023.122042
摘要

In this paper, we present a multi-objective low-carbon multimodal transportation planning problem with fuzzy demand and fuzzy time (MOLCMTPP-FDFT) that minimizes both cost and time while incorporating mandatory carbon emission, carbon tax, carbon trading, and carbon offset policies. Chance constrained programming and interval programming are introduced to formulate the fuzzy demand chance constrained programming model and the fuzzy time interval programming model, respectively. Then, the mathematical model of uncertain MOLCMTPP-FDFT is transformed into a deterministic model. Based on the sparrow search algorithm, t distribution and the concept of Pareto optimality for multi-objective optimization, we also propose a solution strategy for the proposed model. In this algorithm, the number of iterations is used as the degree of freedom of - to update the sparrow location, which strikes a balance between the capabilities of global search and local search. Finally, the proposed algorithm and MOLCMTPP-FDFT are applied to a real case, resulting in a minimum cost of 260730.48 and a time duration of 13.044, which outperform the minimum cost of 268874.88 and minimum time of 18.32 obtained using single-mode transportation. The carbon emissions resulting from the lowest-cost solution obtained using single-mode transportation are 3,198.48, which are significantly more than the allowed emissions. Therefore, the proposed algorithm and mathematical model of MOLCMTPP-FDFT are valuable tools for optimizing multimodal transportation route. Additionally, the experimental results not only validate the superior efficiency and energy-saving benefits of the proposed multimodal transportation routes in comparison to the actual single-modal transportation, but also demonstrate the applicability of different low-carbon policies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忐忑的草丛完成签到,获得积分10
2秒前
鱼贝贝完成签到,获得积分10
3秒前
3秒前
sss完成签到,获得积分10
3秒前
尤瑟夫完成签到 ,获得积分10
3秒前
4秒前
赖氨酸完成签到,获得积分10
5秒前
6秒前
星辰发布了新的文献求助10
9秒前
gougou发布了新的文献求助10
9秒前
11秒前
11秒前
科研韭菜完成签到 ,获得积分10
13秒前
桥豆麻袋完成签到,获得积分10
13秒前
桃子完成签到 ,获得积分10
13秒前
spinon发布了新的文献求助10
14秒前
枫糖叶落完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
迷路凌柏完成签到 ,获得积分10
17秒前
月桂氮卓酮完成签到,获得积分10
17秒前
17秒前
友好的冥王星完成签到,获得积分10
17秒前
那时年少完成签到,获得积分10
17秒前
Murphy~完成签到,获得积分10
19秒前
整齐的电源完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
大力的诗蕾完成签到 ,获得积分10
20秒前
十五完成签到,获得积分10
21秒前
研友_n0kjPL完成签到,获得积分0
22秒前
科研狗完成签到 ,获得积分0
24秒前
失眠的笑翠完成签到 ,获得积分10
24秒前
如约而至完成签到,获得积分10
26秒前
27秒前
小黄豆完成签到,获得积分10
29秒前
沟通亿心完成签到,获得积分10
29秒前
jacobian完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
fuluyuzhe_668完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715621
求助须知:如何正确求助?哪些是违规求助? 5235764
关于积分的说明 15274658
捐赠科研通 4866353
什么是DOI,文献DOI怎么找? 2612926
邀请新用户注册赠送积分活动 1563081
关于科研通互助平台的介绍 1520565