贝叶斯推理
不确定度量化
计算机科学
贝叶斯概率
算法
最大后验估计
协方差矩阵
反演(地质)
不确定度分析
推论
合成数据
迭代法
后验概率
度量(数据仓库)
数学优化
反问题
卡尔曼滤波器
协方差
数据挖掘
数学
人工智能
地质学
机器学习
统计
最大似然
古生物学
数学分析
构造盆地
模拟
作者
Shuang Wang,Xiangbo Gong,Xingguo Huang,Jing Rao,Kristian Jensen,Li Han,Naijian Wang,Xuliang Zhang
出处
期刊:Geophysics
[Society of Exploration Geophysicists]
日期:2023-11-15
卷期号:89 (2): S145-S154
标识
DOI:10.1190/geo2022-0721.1
摘要
Reverse time migration (RTM) has been proven capable of producing high-quality images of subsurface structures. However, limited subsurface illumination combined with inaccurate forward modeling and migration velocities all lead to uncertainty in the seismic images. We quantify the migration uncertainty of RTM using an iterative inversion method based on a Bayesian inference framework. The posterior covariance matrix, computed at the maximum a posteriori (MAP) model, provides the foundation for estimating uncertainty. In the Bayesian inference framework, we combine an explicit sensitivity matrix based on a Green’s function representation with an iterative extended Kalman filter method. This enables us to determine the MAP solution of RTM and an estimate of its uncertainty. Numerical examples using synthetic data demonstrate how well the method can measure RTM uncertainty and produce reliable imaging results.
科研通智能强力驱动
Strongly Powered by AbleSci AI