Multi-trucks-and-drones cooperative pickup and delivery problem

卡车 无人机 皮卡 列生成 计算机科学 整数规划 背景(考古学) 车辆路径问题 调度(生产过程) 帧(网络) 线性规划 数学优化 布线(电子设计自动化) 运筹学 工程类 算法 汽车工程 数学 计算机网络 人工智能 古生物学 图像(数学) 生物 遗传学
作者
Jiajing Gao,Lu Zhen,Shuaian Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:157: 104407-104407 被引量:44
标识
DOI:10.1016/j.trc.2023.104407
摘要

This study aims to propose a decision methodology on scheduling trucks and drones for truck-and-drone cooperative delivery and pickup system. A fleet contains multiple truck groups; each truck group is a truck with carrying multiple drones. The fleet serves a set of dispersed customers who have the requirements of pickup and delivery services as well as their due time for service. A mixed-integer linear programming (MILP) model is formulated in this study for routing the trucks and drones in the fleet so that each customer's pickup or delivery requirements could be served by either a truck or a drone before their required due time. For solving the MILP model efficiently, this study designs a novel hybrid algorithm by combining the column generation and the logic-based Benders decomposition. Based on the main frame of column generation algorithm, the hybrid algorithm uses logic-based Benders decomposition to solve the pricing problem, and dynamic programming to solve subproblems of logic-based Benders decomposition for the purpose of accelerating the whole algorithm's solving process. Numerical experiments are also conducted on the context of the Hangzhou city so as to validate the efficiency of the proposed hybrid algorithm. Some managerial implications are also derived on the basis of some sensitivity analysis. The proposed methodology, i.e., the MILP model and the novel hybrid algorithm, is potentially useful for platform operators who run the truck-and-drone based urban delivery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴朗发布了新的文献求助10
刚刚
刚刚
Eon发布了新的文献求助10
1秒前
Lucas应助悦耳怜珊采纳,获得10
1秒前
存存完成签到 ,获得积分10
1秒前
一只耳发布了新的文献求助10
2秒前
luoyue完成签到,获得积分10
2秒前
2秒前
2秒前
lijyuuu发布了新的文献求助10
2秒前
明理飞风完成签到,获得积分10
4秒前
NexusExplorer应助长情怜菡采纳,获得10
4秒前
kk完成签到,获得积分10
4秒前
luoyue发布了新的文献求助10
4秒前
十一发布了新的文献求助10
4秒前
momo发布了新的文献求助10
5秒前
马放南山发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
戚听云发布了新的文献求助10
7秒前
共享精神应助tz采纳,获得10
7秒前
典雅的俊驰应助战五渣采纳,获得30
8秒前
隐形曼青应助lijyuuu采纳,获得10
9秒前
gs完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
马户的崛起完成签到,获得积分10
10秒前
10秒前
安静无招发布了新的文献求助10
12秒前
俏皮的寒凝关注了科研通微信公众号
13秒前
momo完成签到,获得积分10
14秒前
隐形曼青应助结实星星采纳,获得10
14秒前
踏实的丝发布了新的文献求助10
14秒前
悦耳怜珊发布了新的文献求助10
15秒前
16秒前
haoooooooooooooo应助清淮采纳,获得10
16秒前
17秒前
JamesPei应助加亓采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694525
求助须知:如何正确求助?哪些是违规求助? 5097567
关于积分的说明 15213869
捐赠科研通 4851086
什么是DOI,文献DOI怎么找? 2602107
邀请新用户注册赠送积分活动 1554007
关于科研通互助平台的介绍 1511898