Multi-trucks-and-drones cooperative pickup and delivery problem

卡车 无人机 皮卡 列生成 计算机科学 整数规划 背景(考古学) 车辆路径问题 调度(生产过程) 帧(网络) 线性规划 数学优化 布线(电子设计自动化) 运筹学 工程类 算法 汽车工程 数学 计算机网络 古生物学 遗传学 人工智能 图像(数学) 生物
作者
Jiajing Gao,Lu Zhen,Shuaian Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:157: 104407-104407 被引量:4
标识
DOI:10.1016/j.trc.2023.104407
摘要

This study aims to propose a decision methodology on scheduling trucks and drones for truck-and-drone cooperative delivery and pickup system. A fleet contains multiple truck groups; each truck group is a truck with carrying multiple drones. The fleet serves a set of dispersed customers who have the requirements of pickup and delivery services as well as their due time for service. A mixed-integer linear programming (MILP) model is formulated in this study for routing the trucks and drones in the fleet so that each customer's pickup or delivery requirements could be served by either a truck or a drone before their required due time. For solving the MILP model efficiently, this study designs a novel hybrid algorithm by combining the column generation and the logic-based Benders decomposition. Based on the main frame of column generation algorithm, the hybrid algorithm uses logic-based Benders decomposition to solve the pricing problem, and dynamic programming to solve subproblems of logic-based Benders decomposition for the purpose of accelerating the whole algorithm's solving process. Numerical experiments are also conducted on the context of the Hangzhou city so as to validate the efficiency of the proposed hybrid algorithm. Some managerial implications are also derived on the basis of some sensitivity analysis. The proposed methodology, i.e., the MILP model and the novel hybrid algorithm, is potentially useful for platform operators who run the truck-and-drone based urban delivery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaos发布了新的文献求助10
1秒前
1秒前
1秒前
ipeakkka发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
小小飞发布了新的文献求助10
3秒前
JamesPei应助韭菜采纳,获得10
4秒前
开开心心的开心应助wahaha采纳,获得10
4秒前
善学以致用应助YE采纳,获得10
4秒前
4秒前
4秒前
木子发布了新的文献求助10
4秒前
义气绿柳发布了新的文献求助10
5秒前
xioatudou完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
a1oft发布了新的文献求助10
5秒前
科研通AI5应助调皮纸飞机采纳,获得20
5秒前
mirror发布了新的文献求助30
6秒前
椰子发布了新的文献求助10
6秒前
情怀应助iu采纳,获得10
6秒前
但是完成签到,获得积分10
6秒前
7秒前
脱贫致富的小殷完成签到,获得积分10
7秒前
花花花花完成签到 ,获得积分10
7秒前
wwwww发布了新的文献求助10
7秒前
诗谙完成签到,获得积分10
7秒前
不赖床的科研狗完成签到,获得积分10
7秒前
7秒前
buno应助幸福胡萝卜采纳,获得10
7秒前
张肥肥关注了科研通微信公众号
9秒前
火山蜗牛完成签到,获得积分10
9秒前
9秒前
魏笑白完成签到 ,获得积分10
10秒前
Orange应助168521kf采纳,获得10
10秒前
不安慕蕊完成签到,获得积分10
10秒前
7777777发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740