Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level

强化学习 光伏系统 计算机科学 调度(生产过程) 需求响应 运筹学 数学优化 工程类 人工智能 运营管理 数学 电气工程
作者
Hyuna Kang,Seunghoon Jung,Hakpyeong Kim,Jaewon Jeoung,Taehoon Hong
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:190: 114054-114054 被引量:20
标识
DOI:10.1016/j.rser.2023.114054
摘要

Installing the battery energy storage system (BESS) and optimizing its schedule to effectively address the intermittency and volatility of photovoltaic (PV) systems has emerged as a critical research challenge. Nonetheless, some existing studies still have limitations in terms of the efficiency of the BESS scheduling due to the lack of comprehensive consideration of diverse user objectives. As a response to this gap, this study aimed to develop a reinforcement learning (RL)-based optimal scheduling model to better reflect the continuous behaviors in the complex real world. To this end, focused on residential buildings connected to the grid and equipped with a BESS and PV system, its optimal scheduling models were developed using four algorithms from among the various RL techniques according to training methods. The results of the case study showed that the developed RL-based optimal scheduling model using Proximal Policy Optimization (PPO) can be applied to effectively operate the BESS with a PV system, considering possible uncertainties in the real world. The case study demonstrated the effectiveness and feasibility of the developed RL-based optimal scheduling model. Compared to other algorithms, the PPO-based RL model has better decision-making for optimal BESS scheduling strategies to maximize their self-sufficiency rate and economic profits by coping with changing variables in the real world. Therefore, the RL-based BESS scheduling model will offer an optimal solution, specifically tailored for use within a virtual power plant, where numerous buildings continuously share electricity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无糖零脂完成签到,获得积分10
1秒前
jou发布了新的文献求助10
1秒前
灰色城市y完成签到,获得积分10
1秒前
小米的稻田完成签到 ,获得积分10
1秒前
stiger完成签到,获得积分10
2秒前
诩阽完成签到,获得积分10
2秒前
烨娴完成签到,获得积分10
3秒前
APTX486911发布了新的文献求助10
3秒前
zhang完成签到,获得积分10
3秒前
123完成签到,获得积分10
4秒前
zhancon完成签到,获得积分10
5秒前
Hh发布了新的文献求助10
5秒前
苗条冰棍发布了新的文献求助10
6秒前
岳苏佳完成签到,获得积分10
6秒前
echo完成签到,获得积分10
7秒前
7秒前
大模型应助Mandarine采纳,获得10
8秒前
ixueyi完成签到,获得积分10
8秒前
搜集达人应助亮仔采纳,获得10
8秒前
天真友易完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
背后的小白菜完成签到,获得积分10
9秒前
复杂的忆枫完成签到,获得积分20
10秒前
10秒前
小二郎应助飞快的诗槐采纳,获得10
10秒前
上官若男应助紫曦采纳,获得10
10秒前
愤怒的树叶完成签到,获得积分10
10秒前
hyekyo完成签到,获得积分10
11秒前
谨慎妙菡完成签到,获得积分10
11秒前
海盗完成签到,获得积分10
11秒前
小趴菜发布了新的文献求助10
12秒前
tjunqi完成签到,获得积分10
12秒前
建丰完成签到,获得积分10
12秒前
Donbin886完成签到,获得积分10
12秒前
贪玩绿柳发布了新的文献求助10
14秒前
整齐醉冬完成签到,获得积分10
14秒前
吴建文发布了新的文献求助10
15秒前
loong发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855