Detection of saffron adulteration with Crocus sativus style using NIR-hyperspectral imaging and chemometrics

番红花 化学计量学 偏最小二乘回归 高光谱成像 模式识别(心理学) 人工智能 线性判别分析 数学 主成分分析 计算机科学 统计 机器学习 植物 生物
作者
Derick Malavi,Amin Nikkhah,Pejman Alighaleh,Soodabeh Einafshar,Katleen Raes,Sam Van Haute
出处
期刊:Food Control [Elsevier]
卷期号:157: 110189-110189 被引量:11
标识
DOI:10.1016/j.foodcont.2023.110189
摘要

Saffron is a valuable spice that is often adulterated. This study proposes using near-infrared hyperspectral imaging (NIR-HSI) and chemometrics as a fast and cost-effective method for detecting and quantifying adulteration in saffron stigmas. Adulterated saffron samples were prepared by adding Crocus sativus style to pure saffron stigmas in varying concentrations (20–90%). The spectral data were pre-treated using standard normal variate (SNV), and multiplicative scatter correction (MSC), while variable reduction was performed by Principal Component Analysis (PCA) and Partial Least Squares (PLS). Classification was done using Linear Discriminant Analysis (LDA), PLS-DA, Support Vector Machine (SVM), and Multi-layer Perceptron (MLP) models, while quantification was achieved by PLS, PCA, SVM, and MLP-based regression models. The HSI technique achieved correct classification rates of 95.6%–100% in discriminating authentic saffron from plant adulterants and adulterated saffron across all the models. Regression models to quantify the percentage style adulteration in saffron demonstrated excellent prediction abilities with almost all models achieving RPD (Residual Predictive Deviation) values of 3.0–5.4. The MLP model (1 hidden layer with 3 neurons) built from SNV pre-processed and PLS reduced data (15 LVs), showed exceptional predictive capabilities, with an R2p of 0.97, a Root Mean Squared Error of Prediction (RMSEP) of 4.3%, and an RPD of 5.4. The results demonstrate the potential of NIR-HSI and chemometrics for rapid and nondestructive detection and quantification of style in saffron stigmas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助yys采纳,获得10
1秒前
wwz应助奕初阳采纳,获得10
1秒前
3秒前
臻臻珍珍完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
万能图书馆应助iuhgnor采纳,获得10
5秒前
6秒前
6秒前
嗒嗒发布了新的文献求助20
6秒前
6秒前
随遇而安完成签到,获得积分10
7秒前
xiximilu完成签到 ,获得积分10
7秒前
wtqaaaa完成签到,获得积分10
7秒前
zhang完成签到,获得积分10
8秒前
wenbin发布了新的文献求助10
8秒前
困倦南瓜完成签到,获得积分10
8秒前
乐乐应助阿琳采纳,获得10
9秒前
清脆采柳发布了新的文献求助10
9秒前
9秒前
xLi关注了科研通微信公众号
10秒前
Chine-Wang发布了新的文献求助10
10秒前
搜集达人应助Cynthia采纳,获得10
10秒前
10秒前
camera发布了新的文献求助10
10秒前
石中玉给石中玉的求助进行了留言
11秒前
11秒前
12秒前
小夏发布了新的文献求助10
12秒前
Huajing_Yang发布了新的文献求助10
12秒前
wenting123完成签到 ,获得积分10
12秒前
14秒前
Ting发布了新的文献求助30
15秒前
奕初阳完成签到,获得积分10
16秒前
小巧南琴发布了新的文献求助10
16秒前
bkagyin应助赵亚南采纳,获得10
16秒前
852应助贪玩的蝴蝶采纳,获得10
17秒前
在水一方应助终陌采纳,获得10
17秒前
嘻嘻哈哈完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042