Light efficacy estimation for fruit trees based on LIDAR point clouds: A case study on pear trees

天蓬 点云 激光雷达 树(集合论) 修剪 数学 遥感 树冠 点(几何) 计算机科学 人工智能 园艺 植物 地理 几何学 生物 数学分析 万维网
作者
Huajun Tang,Zhe Xu,Shuyu Chen,Shenghui Yang,Weihong Liu,Linghui Zhou,Yaxiong Wang,Feng Kang,Omayma Ismail,Yongjun Zheng
出处
期刊:Scientia Horticulturae [Elsevier BV]
卷期号:324: 112590-112590 被引量:1
标识
DOI:10.1016/j.scienta.2023.112590
摘要

It is important to evaluate the effect of fruit-tree pruning based on canopy-structure characteristics so as to keep appropriate illumination for tree growth. However, current pruning and evaluation mainly rely on manual experience due to lacking a convenient and automatic approach to obtain such features. This paper proposes a method for estimating light efficacy based on layered canopy point-clouds, where leaf-area was selected as the canopy characteristic. LIDAR was utilised to scan pear trees in three dimensions to acquire initial point clouds, and preprocess was conducted to obtain the point-cloud images of different canopy layers. Then, an optimised algorithm based on Freeman Chain was developed to accurately draw the outlines of point-cloud clusters in the images, and pixel proportion was used to calculate the real leaf-area of each layer. Finally, based on Deep Neural Network, an estimation model was established between different layer leaf-areas and their average illumination acquired in tests. The proposed method was applied to estimate the illumination of a random pear tree to evaluate the variation of light intensity. The results showed that: 1) the average relative error of leaf-area calculation of the optimised Freeman Chain method was about 6.74 %, although the running duration was longer than the conventional one, 2) the overall correlation coefficient, R, of the model was more than 0.95, while that of validation and test sets were more than 0.94, and 3) the illumination estimation was accurate and precise with an average relative error of 1.42 % and a standard deviation of relative errors of 1.19. The validation indicated that this method could achieve the prediction of illumination based on different leaf-area characteristics. The study is expected to give a technical solution for the illumination evaluation before and after tree pruning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gmugyy完成签到,获得积分10
1秒前
无花果应助net采纳,获得10
1秒前
2秒前
3秒前
饼藏发布了新的文献求助10
5秒前
王一一发布了新的文献求助10
7秒前
funi发布了新的文献求助10
7秒前
9秒前
友好盼晴完成签到,获得积分10
10秒前
wufel2完成签到,获得积分10
11秒前
11秒前
nebula应助濮阳冰海采纳,获得50
13秒前
13秒前
xiaochen发布了新的文献求助10
14秒前
迷路的墨镜完成签到,获得积分10
14秒前
爱lx发布了新的文献求助10
15秒前
清修发布了新的文献求助10
15秒前
16秒前
莎莎发布了新的文献求助10
17秒前
蓝天白云发布了新的文献求助10
18秒前
YamDaamCaa应助qikkk采纳,获得200
21秒前
net发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
研友_LOKXmL完成签到,获得积分10
22秒前
xuexue完成签到,获得积分10
22秒前
U9A发布了新的文献求助10
23秒前
ding应助yuwen采纳,获得10
23秒前
25秒前
个别发布了新的文献求助10
25秒前
极品男大发布了新的文献求助10
25秒前
汉堡包应助沫沫采纳,获得20
28秒前
30秒前
研友_ndDGVn发布了新的文献求助10
30秒前
31秒前
缥缈的紫文完成签到,获得积分10
31秒前
32秒前
天天快乐应助GGBAO采纳,获得10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578