Feature specific progressive improvement for salient object detection

计算机科学 特征(语言学) 人工智能 模式识别(心理学) 突出 特征提取 适应性 过程(计算) 推论 噪音(视频) 图像(数学) 生态学 哲学 语言学 生物 操作系统
作者
Xianheng Wang,Zhaobin Liu,Veronica Liesaputra,Zhiyi Huang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:147: 110085-110085 被引量:14
标识
DOI:10.1016/j.patcog.2023.110085
摘要

Benefiting from deep learning, Salient Object Detection (SOD) has made much progress. However, most existing methods adopt the same strategy to extract salient cues from different feature levels without fully considering their differences in the feature extraction stage and/or suffer from the accumulation of noise and dilution of spatial details in the feature fusion stage. These two problems hinder the further improvement in performance. In this paper, we propose an effective SOD model, PiNet, which can address the above problems via two novel mechanisms in the network: level-specific feature extraction and progressive refinement of saliency. We have designed the customized feature extraction components for each level of features—enabling us to extract better saliency cues from multi-level features. The saliency feature refinement in the branches follows a coarse-to-fine process, where the refined features progressively contain more location cues, internal and boundary details. Through short connections, the extracted saliency cues in different branches are selectively transmitted and integrated, which well mitigates the accumulation of noisy information and the dilution of detailed information. By using four different backbones, we verify our model has good adaptability and can make accurate saliency predictions under different pretrained models. Extensive experiments on five public datasets demonstrate that PiNet outperforms 19 state-of-the-art (SOTA) methods in SOD, with its small model size (56.1 MB) and fast inference speed (47 FPS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羡完成签到 ,获得积分10
1秒前
1秒前
卢莹完成签到,获得积分10
3秒前
3秒前
fanglin123完成签到,获得积分10
7秒前
安在哉完成签到,获得积分10
9秒前
14秒前
李爱国应助静文采纳,获得10
15秒前
19秒前
jiangru发布了新的文献求助30
19秒前
小马甲应助孙总采纳,获得10
21秒前
谢丹完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
狸花小喵发布了新的文献求助10
24秒前
ying发布了新的文献求助10
26秒前
27秒前
大气亦巧发布了新的文献求助10
28秒前
拂袖完成签到,获得积分10
29秒前
29秒前
32秒前
小鱼完成签到,获得积分10
32秒前
hecheng发布了新的文献求助30
33秒前
孙总发布了新的文献求助10
33秒前
热心市民小红花应助niusama采纳,获得10
33秒前
34秒前
35秒前
35秒前
Jeamren完成签到,获得积分10
35秒前
赞zan发布了新的文献求助10
36秒前
1230发布了新的文献求助10
37秒前
斯文败类应助大气亦巧采纳,获得30
37秒前
echo发布了新的文献求助10
40秒前
41秒前
42秒前
完美世界应助甜美的成败采纳,获得10
42秒前
风一样的风干肠完成签到,获得积分10
42秒前
theblue发布了新的文献求助10
42秒前
hoijuon应助1230采纳,获得10
44秒前
Akim应助笨笨醉薇采纳,获得10
44秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150