Highly Ordered Hierarchical Porous Single‐Atom Fe Catalyst with Promoted Mass Transfer for Efficient Electroreduction of CO2

传质 材料科学 介孔材料 催化作用 电化学 介电谱 交换电流密度 化学工程 电催化剂 二氧化碳电化学还原 化学物理 多孔介质 多孔性 物理化学 热力学 化学 电极 一氧化碳 复合材料 塔菲尔方程 工程类 物理 生物化学
作者
Chen Jia,Yong Zhao,Shuang Song,Qian Sun,Quentin Meyer,Shiyang Liu,Yansong Shen,Chuan Zhao
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (37) 被引量:35
标识
DOI:10.1002/aenm.202302007
摘要

Abstract Electrocatalysts are crucial to drive the electrochemical carbon dioxide reduction reaction (CO 2 RR) which lower the energy barrier, tune the intricate reaction pathways and suppress competitive side‐reaction. Beyond the efficient active sites and advantageous local environment, a rapid mass transfer ability is also crucial for the catalyst design. However, it is rare that research has been done to investigate in detail the mass transfer process in CO 2 RR, and expose the underlying relationship between mass transfer and final performance. Here, a single‐atom Fe‐N‐C catalyst is shown with a highly ordered porous substrate containing hierarchical micropores, mesopores, and macropores. Such a delicate porous structure significantly facilitates the mass transfer process toward the isolated Fe sites, achieving excellent CO 2 RR performance, especially in the limited mass transfer region in a H‐cell with a maximum CO partial current density of ‐19 mA cm −2 . Operando electrochemical impedance spectroscopy and relevant distributed relaxation times analysis reveal the rapidly decreased mass transfer resistance with the increase of reduction potential. The Lattice Boltzmann method with Discrete Element method (LBM‐DEM) simulations are further performed to exhibit the origin of enhanced CO 2 RR performance from the facilitated gas diffusion process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞白曼完成签到,获得积分10
刚刚
刚刚
海鸥海鸥发布了新的文献求助10
1秒前
别让我误会完成签到 ,获得积分10
2秒前
2秒前
KK发布了新的文献求助30
2秒前
娃娃完成签到 ,获得积分20
2秒前
科研通AI5应助结实的冰真采纳,获得30
2秒前
冷静的小熊猫完成签到,获得积分10
3秒前
Donnie完成签到,获得积分10
3秒前
若尘完成签到,获得积分10
4秒前
椰子完成签到 ,获得积分10
4秒前
4秒前
细腻涵菱完成签到,获得积分10
5秒前
吕耀炜完成签到,获得积分10
5秒前
5秒前
5秒前
简称王完成签到 ,获得积分10
5秒前
蓝莓松饼完成签到,获得积分10
6秒前
一路高飛完成签到,获得积分10
6秒前
赘婿应助andyxrz采纳,获得10
6秒前
Zhang完成签到,获得积分10
6秒前
7秒前
年轻冥茗完成签到,获得积分10
7秒前
apple发布了新的文献求助10
8秒前
CarterXD完成签到,获得积分10
8秒前
紧张的友灵完成签到,获得积分10
8秒前
SciGPT应助之仔饼采纳,获得10
9秒前
liudiqiu应助追寻的易烟采纳,获得10
9秒前
Chem is try发布了新的文献求助10
9秒前
9秒前
vsoar完成签到,获得积分10
9秒前
10秒前
11秒前
GGGGGGGGGG发布了新的文献求助10
11秒前
11秒前
打打应助hhh采纳,获得10
12秒前
抓恐龙关注了科研通微信公众号
12秒前
碳点godfather完成签到,获得积分10
12秒前
ren完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672