化学
细胞
生物物理学
细胞培养
质谱法
色谱法
生物化学
遗传学
生物
作者
Paula Menero-Valdés,Michail Ioannis Chronakis,Beatriz Fernández,C. Derrick Quarles,Héctor González‐Iglesias,Björn Meermann,Rosario Pereiro
标识
DOI:10.1021/acs.analchem.3c02558
摘要
An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell-inductively coupled plasma-time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI