Identification of novel dipeptidyl peptidase-4 inhibitory peptides from pea proteins: A combined in silico and in vitro study

生物信息学 二肽基肽酶 化学 体外 二肽基肽酶-4 IC50型 对接(动物) 生物化学 虚拟筛选 抑制性突触后电位 生物 药物发现 医学 护理部 神经科学 糖尿病 2型糖尿病 基因 内分泌学
作者
Mingkai Zhang,Ling Zhu,Hui Zhang,Xingguo Wang,Tongtong Liu,Xiguang Qi,Gangcheng Wu
出处
期刊:Food bioscience [Elsevier BV]
卷期号:56: 103374-103374 被引量:7
标识
DOI:10.1016/j.fbio.2023.103374
摘要

Dipeptidyl Peptidase 4 inhibitory peptides (DPP-4IPs) could exhibit their hypoglycemic effects by preventing Glucagon-like peptide 1 (GLP-1) degradation. However, identifying DPP-4IPs by traditional approach is laborious. Therefore, this study aims to rapidly identify DPP-4IPs by an in silico method. After in silico digestion, 509 peptide fragments were obtained from pea proteins. Subsequently, two novel DPP-4IPs SPGDVF and EPF with the in vitro half-maximal inhibitory concentrations (IC50) values of 277.61 and 406.47 μM were obtained by virtual screening and molecular docking. Interestingly, their in situ DPP-4 IC50 values in Caco-2 cells were increased to 918.82 and 1868.27 μM, respectively. Lineweaver−Burk double-reciprocal plots revealed that SPGDVF and EPF were competitive and mixed-type DPP-4IPs, respectively. Significantly, molecular docking suggested that SPGDVF could bond with DPP-4 active pockets. While EPF only bound outside of these active pockets, which may be the reason that EPF was weaker than SPGDVF in DPP-4 inhibition. Overall, this work provides a convenient strategy for identifying DPP-4IPs from food proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌殇发布了新的文献求助10
1秒前
4秒前
5秒前
6秒前
随风完成签到 ,获得积分10
7秒前
xx完成签到,获得积分20
9秒前
今后应助舒服的吗喽采纳,获得10
10秒前
呐殇完成签到,获得积分10
11秒前
11秒前
12秒前
橙子发布了新的文献求助10
13秒前
舒伯特完成签到 ,获得积分10
13秒前
14秒前
故意的怜晴完成签到 ,获得积分10
14秒前
16秒前
sunlight完成签到,获得积分10
17秒前
英姑应助xx采纳,获得10
17秒前
18秒前
18秒前
Ir应助犹豫的铸海采纳,获得10
20秒前
leasmoss关注了科研通微信公众号
20秒前
zhou发布了新的文献求助10
21秒前
棒呆发布了新的文献求助10
22秒前
隐形曼青应助敏感的伟祺采纳,获得10
22秒前
22秒前
橙子完成签到,获得积分20
23秒前
天边完成签到 ,获得积分10
23秒前
啦啦啦发布了新的文献求助10
24秒前
sunlight关注了科研通微信公众号
26秒前
28秒前
28秒前
sobergod发布了新的文献求助10
28秒前
doudou完成签到,获得积分10
29秒前
30秒前
汉堡包应助舒适的梦玉采纳,获得10
32秒前
上官若男应助舒适的梦玉采纳,获得10
32秒前
英姑应助舒适的梦玉采纳,获得10
32秒前
顾矜应助舒适的梦玉采纳,获得10
32秒前
33秒前
leasmoss发布了新的文献求助10
34秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3715470
求助须知:如何正确求助?哪些是违规求助? 3262331
关于积分的说明 9923943
捐赠科研通 2976090
什么是DOI,文献DOI怎么找? 1632071
邀请新用户注册赠送积分活动 774315
科研通“疑难数据库(出版商)”最低求助积分说明 744856