Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122332-122332 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
hh发布了新的文献求助10
12秒前
Prejudice3完成签到,获得积分10
13秒前
Jere发布了新的文献求助20
17秒前
金黎完成签到,获得积分20
20秒前
ICBC完成签到 ,获得积分10
21秒前
NexusExplorer应助天玄采纳,获得10
23秒前
科研通AI2S应助Solkatt采纳,获得10
23秒前
ccc完成签到,获得积分10
24秒前
wylwyl完成签到,获得积分10
30秒前
muky关注了科研通微信公众号
30秒前
Lucas应助通天塔采纳,获得80
30秒前
endoscopy发布了新的文献求助10
31秒前
33秒前
shhoing应助超级王国采纳,获得10
34秒前
Owen应助来杯冰美式采纳,获得10
38秒前
CipherSage应助卢志帅采纳,获得10
39秒前
Wiesen发布了新的文献求助10
42秒前
44秒前
星辰大海应助feiyang采纳,获得10
46秒前
大方夏瑶关注了科研通微信公众号
47秒前
通天塔发布了新的文献求助80
47秒前
48秒前
大个应助越明年采纳,获得10
50秒前
乐乐应助WN采纳,获得10
50秒前
marvinvin发布了新的文献求助10
51秒前
shhoing应助超级王国采纳,获得10
52秒前
53秒前
Ninece完成签到 ,获得积分10
54秒前
度ewf发布了新的文献求助10
55秒前
超级王国完成签到,获得积分10
57秒前
搜集达人应助GG采纳,获得10
59秒前
YDL发布了新的文献求助10
59秒前
菠萝完成签到 ,获得积分0
1分钟前
1分钟前
度ewf完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
酷波er应助小康采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523