亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122332-122332 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的抽象完成签到 ,获得积分10
2秒前
2秒前
VDC发布了新的文献求助10
3秒前
牢牛马完成签到 ,获得积分10
3秒前
欢喜的伊完成签到,获得积分10
4秒前
5秒前
丘比特应助接两块钱采纳,获得10
6秒前
7秒前
8秒前
mtt发布了新的文献求助10
11秒前
13秒前
zz关闭了zz文献求助
13秒前
13秒前
国色不染尘完成签到,获得积分10
14秒前
15秒前
15秒前
leslie发布了新的文献求助10
17秒前
爆米花应助monster采纳,获得10
18秒前
111222333发布了新的文献求助30
19秒前
ceeray23应助6666采纳,获得10
20秒前
小葵发布了新的文献求助200
22秒前
mtt完成签到,获得积分10
24秒前
24秒前
yuki完成签到 ,获得积分10
25秒前
kki完成签到,获得积分10
30秒前
粗犷的灵松完成签到,获得积分10
30秒前
CipherSage应助轩辕寄翠采纳,获得10
31秒前
喜悦宫苴完成签到,获得积分10
32秒前
酷酷以柳发布了新的文献求助10
32秒前
GavinYi完成签到,获得积分10
35秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
BowieHuang应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
39秒前
40秒前
合一海盗完成签到,获得积分10
41秒前
43秒前
扶苏完成签到,获得积分10
43秒前
晴朗完成签到 ,获得积分10
44秒前
Fionn发布了新的文献求助30
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599