Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122332-122332 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ay完成签到,获得积分10
1秒前
2秒前
海棠完成签到 ,获得积分10
2秒前
liu发布了新的文献求助10
2秒前
Nicky_N发布了新的文献求助30
3秒前
开心的吐司完成签到,获得积分10
3秒前
DJ_Tokyo完成签到,获得积分0
3秒前
彭于晏应助张婷采纳,获得10
4秒前
4秒前
科研通AI6应助杨佳楠采纳,获得10
5秒前
周乘风发布了新的文献求助10
5秒前
brk完成签到,获得积分10
6秒前
下雨了完成签到,获得积分10
7秒前
7秒前
英俊的铭应助Emma采纳,获得10
7秒前
Hello应助Yuanyuan采纳,获得10
8秒前
Duomo完成签到 ,获得积分10
9秒前
留胡子的火完成签到,获得积分10
9秒前
黄俊完成签到,获得积分10
10秒前
壮壮发布了新的文献求助10
10秒前
DMMM完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
科研小白董完成签到 ,获得积分10
11秒前
科研通AI2S应助谢先生采纳,获得10
11秒前
lalala发布了新的文献求助10
11秒前
慧慧34完成签到 ,获得积分10
11秒前
12秒前
你好完成签到,获得积分20
13秒前
tttttt发布了新的文献求助10
13秒前
13秒前
13秒前
周乘风完成签到,获得积分10
13秒前
13秒前
一一应助兴奋的机器猫采纳,获得10
14秒前
dyfsj发布了新的文献求助10
14秒前
15秒前
SciGPT应助keyanren_小庆采纳,获得10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524661
求助须知:如何正确求助?哪些是违规求助? 4615154
关于积分的说明 14546595
捐赠科研通 4553141
什么是DOI,文献DOI怎么找? 2495163
邀请新用户注册赠送积分活动 1475760
关于科研通互助平台的介绍 1447541