Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122332-122332 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄xuan发布了新的文献求助10
刚刚
xiuuu发布了新的文献求助10
1秒前
好名字发布了新的文献求助10
2秒前
moffy发布了新的文献求助10
2秒前
科研通AI6应助聪明的大叔采纳,获得10
2秒前
华仔应助清脆的一一采纳,获得10
2秒前
FashionBoy应助高高以松采纳,获得10
3秒前
Naive发布了新的文献求助10
3秒前
percy发布了新的文献求助10
3秒前
乐乐应助Hui采纳,获得30
4秒前
易渤超发布了新的文献求助30
4秒前
尉浩泽完成签到,获得积分10
5秒前
嘿嘿发布了新的文献求助10
5秒前
无心。发布了新的文献求助10
5秒前
小巧的风华完成签到,获得积分20
5秒前
pyy发布了新的文献求助10
6秒前
cc发布了新的文献求助10
7秒前
陈麦发布了新的文献求助10
7秒前
7秒前
归尘发布了新的文献求助10
7秒前
8秒前
小二郎应助Riggle G采纳,获得10
8秒前
8秒前
天天快乐应助ht采纳,获得10
8秒前
8秒前
二依完成签到,获得积分10
8秒前
好名字完成签到,获得积分20
9秒前
科研通AI6应助尉浩泽采纳,获得10
9秒前
英俊的铭应助Zkxxxx采纳,获得10
9秒前
9秒前
10秒前
NexusExplorer应助arizaki7采纳,获得10
11秒前
善学以致用应助arizaki7采纳,获得10
11秒前
英姑应助arizaki7采纳,获得10
11秒前
12秒前
12秒前
12秒前
Ava应助欧科狗采纳,获得10
12秒前
所所应助轻松盼雁采纳,获得10
12秒前
Yyyyyyyyy完成签到,获得积分10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726