Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122332-122332 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助党阳阳采纳,获得10
刚刚
1秒前
1秒前
1秒前
史克珍香完成签到 ,获得积分10
2秒前
AIDA完成签到,获得积分10
2秒前
斯文败类应助Guzaiya采纳,获得10
3秒前
gavin完成签到 ,获得积分10
4秒前
飞快的从彤完成签到 ,获得积分20
4秒前
茶米发布了新的文献求助10
5秒前
脱羰甲酸发布了新的文献求助10
6秒前
hhdegf发布了新的文献求助10
8秒前
8秒前
科目三应助ldp采纳,获得10
9秒前
研友_8o5V2n完成签到,获得积分10
10秒前
溜溜梅完成签到,获得积分10
10秒前
花生小铺主人完成签到,获得积分10
11秒前
斯文败类应助llll采纳,获得10
11秒前
11秒前
11秒前
Gumayusi发布了新的文献求助10
12秒前
wxy发布了新的文献求助10
12秒前
Carmen完成签到,获得积分10
13秒前
13秒前
李爱国应助luck采纳,获得10
14秒前
14秒前
细腻荔枝完成签到 ,获得积分10
15秒前
嘟噜嘟噜应助龙王使采纳,获得10
16秒前
16秒前
16秒前
LLX123发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
wxy发布了新的文献求助10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
FashionBoy应助茶米采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594