Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122332-122332 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
草木发布了新的文献求助10
刚刚
刚刚
123发布了新的文献求助10
刚刚
CJYY发布了新的文献求助10
刚刚
张亚博完成签到,获得积分20
刚刚
sswbzh应助Lin.隽采纳,获得50
1秒前
gy应助zz采纳,获得30
1秒前
2秒前
李健的粉丝团团长应助YUMI采纳,获得10
2秒前
Atopos完成签到,获得积分10
2秒前
今后应助孙漪采纳,获得10
2秒前
7lanxiong完成签到,获得积分10
2秒前
KKKKKKKKKKKK发布了新的文献求助10
3秒前
3秒前
3秒前
观潮应助冷傲凝琴采纳,获得10
3秒前
3秒前
3秒前
4秒前
崔雪峰发布了新的文献求助30
4秒前
4秒前
白露完成签到 ,获得积分10
4秒前
科研通AI2S应助sinlar采纳,获得10
5秒前
七七七发布了新的文献求助10
5秒前
syc完成签到,获得积分20
5秒前
长安的荔枝完成签到,获得积分10
5秒前
lyn123完成签到,获得积分10
5秒前
怀风发布了新的文献求助10
5秒前
大个应助羊羊羊采纳,获得10
6秒前
6秒前
qian完成签到,获得积分10
6秒前
干净老姆完成签到,获得积分10
6秒前
兰兰兰发布了新的文献求助10
6秒前
jiayou发布了新的文献求助10
7秒前
7秒前
喜喜不嘻嘻应助LKT采纳,获得10
7秒前
华仔应助Benjamin采纳,获得10
7秒前
ovo完成签到,获得积分20
7秒前
su发布了新的文献求助10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692886
求助须知:如何正确求助?哪些是违规求助? 5090698
关于积分的说明 15210088
捐赠科研通 4850102
什么是DOI,文献DOI怎么找? 2601504
邀请新用户注册赠送积分活动 1553332
关于科研通互助平台的介绍 1511381