已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122332-122332 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
聴說关注了科研通微信公众号
2秒前
4秒前
王景晨完成签到,获得积分10
5秒前
7秒前
过往之猪发布了新的文献求助10
7秒前
SciGPT应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
10秒前
lemonyu完成签到 ,获得积分10
15秒前
15秒前
16秒前
17秒前
脑洞疼应助ccq采纳,获得10
17秒前
miwu1232发布了新的文献求助20
17秒前
半颜发布了新的文献求助50
19秒前
缥缈的绝悟完成签到,获得积分10
19秒前
20秒前
amberzyc应助小鹏同学采纳,获得10
21秒前
日月同辉发布了新的文献求助10
21秒前
迅速的谷波关注了科研通微信公众号
21秒前
21秒前
22秒前
Jasper应助陶醉若云采纳,获得10
22秒前
高等数学完成签到,获得积分10
24秒前
24秒前
英勇安筠发布了新的文献求助10
25秒前
胡晓明完成签到,获得积分10
25秒前
25秒前
26秒前
彭于晏应助易未采纳,获得10
27秒前
慈祥的碧发布了新的文献求助10
29秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584366
求助须知:如何正确求助?哪些是违规求助? 4667919
关于积分的说明 14770159
捐赠科研通 4610426
什么是DOI,文献DOI怎么找? 2529801
邀请新用户注册赠送积分活动 1498815
关于科研通互助平台的介绍 1467321