Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:355: 122332-122332 被引量:2
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽小蕾发布了新的文献求助10
1秒前
蜗牛星星发布了新的文献求助10
1秒前
罗尔与柯西完成签到,获得积分10
4秒前
ww完成签到 ,获得积分10
5秒前
NL14D发布了新的文献求助10
6秒前
6秒前
111完成签到,获得积分10
6秒前
7秒前
蜗牛星星完成签到,获得积分10
8秒前
alvin发布了新的文献求助10
11秒前
平常的羊发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
15秒前
冉景平完成签到 ,获得积分10
16秒前
16秒前
17秒前
霜序发布了新的文献求助10
17秒前
19秒前
ding应助wyz采纳,获得10
19秒前
tianqing完成签到,获得积分10
20秒前
等等发布了新的文献求助10
20秒前
元一一发布了新的文献求助10
20秒前
廾匸发布了新的文献求助10
21秒前
22秒前
小白发布了新的文献求助10
22秒前
JamesPei应助聪慧的石头采纳,获得10
22秒前
sy完成签到,获得积分10
23秒前
香酥板栗完成签到,获得积分10
24秒前
汉堡包应助等等采纳,获得10
25秒前
SciGPT应助shadowzxh采纳,获得10
26秒前
FashionBoy应助贝壳采纳,获得10
29秒前
shunlibiye完成签到,获得积分10
30秒前
Druid发布了新的文献求助10
32秒前
饺子完成签到,获得积分10
33秒前
lm完成签到,获得积分10
35秒前
Artemisia完成签到,获得积分10
35秒前
阚曦发布了新的文献求助30
35秒前
圆锥香蕉应助冷傲凝琴采纳,获得20
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141198
捐赠科研通 3241162
什么是DOI,文献DOI怎么找? 1791358
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803396