Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels

均方误差 计算机科学 数据挖掘 人工智能 电池(电) 健康状况 模式识别(心理学) 机器学习 功率(物理) 数学 统计 量子力学 物理
作者
Tianyu Wang,Zhongjing Ma,Suli Zou,Zhan Chen,Peng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122332-122332 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122332
摘要

The State-of-Health (SOH) estimation of Lithium-ion (Li-ion) batteries is critical for the safe and reliable operation of the batteries. Deep learning technologies are currently the popular methods for SOH estimation due to the advantages of no modeling and automatic feature extraction. However, existing methods require a large amount of annotated data to ensure model fitting, and the collection and labeling of battery aging data are time-consuming and laborious. Therefore, a self-supervised framework incorporating weak labels (SSF-WL) is proposed in this paper to obtain excellent estimation results on a small amount of annotated data. First, a novel data processing method based on the Gramian angular field, difference calculation, and raw data is proposed to enrich information and enhance features. Then, a five-layer Transformer encoder is constructed in SSF-WL for feature extraction. Finally, the model is pre-trained and fine-tuned on the proposed SSF-WL to obtain the estimated results of SOH. The proposed method is validated on the 124 commercial battery and Oxford databases. Experiments indicate that when using only 30% of the annotated training data, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained by SSF-WL are 0.5219%/0.6085% lower than traditional supervised learning on the 124 commercial battery database, respectively. Moreover, the SSF-WL pre-trained model on a large unannotated database can be transferred to different types of batteries with a small annotated database and obtains on-par or better estimation results than the model trained from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qfyyyyyyy发布了新的文献求助10
1秒前
lxy发布了新的文献求助10
2秒前
桐桐应助酷酷的水杯采纳,获得10
4秒前
自由妙竹发布了新的文献求助10
4秒前
6秒前
潘三岁完成签到,获得积分20
7秒前
7秒前
希望天下0贩的0应助heroi采纳,获得10
8秒前
sb完成签到,获得积分10
9秒前
9秒前
科研通AI6应助无情的琳采纳,获得10
10秒前
CipherSage应助不知采纳,获得10
10秒前
wy完成签到,获得积分10
11秒前
11秒前
wanci应助自由妙竹采纳,获得10
12秒前
13秒前
14秒前
姜姜姜完成签到,获得积分10
14秒前
GM发布了新的文献求助10
14秒前
Criminology34应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
pluto应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
qigu发布了新的文献求助10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060