亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Retail Demand Forecasting Using Spatial-Temporal Gradient Boosting Methods

计算机科学 梯度升压 需求预测 Boosting(机器学习) 决策树 交易数据 数据库事务 运筹学 人工智能 数据挖掘 计量经济学 机器学习 随机森林 经济 工程类 程序设计语言
作者
Jiaxing Wang,Woon Kian Chong,Junyi Lin,Carl Philip T. Hedenstierna
出处
期刊:Journal of Computer Information Systems [Informa]
卷期号:64 (5): 652-664 被引量:6
标识
DOI:10.1080/08874417.2023.2240753
摘要

ABSTRACTWith the significant growth of the e-commerce business, the retail industry is experiencing rapid developments, leading to the explosion of the number of stock-keeping units (SKUs). Therefore, it calls for forecasting algorithms to forecast a large number of product-level demands over a short forecasting horizon. We developed a novel machine learning algorithm—the spatial-temporal gradient boosting tree (ST-GBT)—for demand forecasting for the retail industry. By incorporating the cross-section and time-series information in the existing gradient-boosting decision tree algorithm, our new algorithm can accurately forecast tremendous SKUs in one process. Furthermore, we show potential factors related to the retail industry, while new factors, such as higher-order statistics and risk-free interest, are also proposed for demand forecasting tasks. The numerical experiment results based on a large e-commerce company's historical transaction records support the comparative merits of the new algorithm with superior accuracy and automation ability.KEYWORDS: Retailing forecastingmachine learninggradient boosting decision treespatial-temporal Disclosure statementNo potential conflict of interest was reported by the author(s).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
飞天大南瓜完成签到,获得积分10
22秒前
moon完成签到 ,获得积分10
27秒前
29秒前
29秒前
天天完成签到 ,获得积分10
30秒前
Criminology34应助科研通管家采纳,获得10
58秒前
Criminology34应助科研通管家采纳,获得10
58秒前
shhoing应助科研通管家采纳,获得10
58秒前
gexzygg应助科研通管家采纳,获得10
58秒前
李爱国应助科研通管家采纳,获得10
58秒前
shhoing应助科研通管家采纳,获得10
58秒前
1分钟前
xiaoxinbaba发布了新的文献求助10
1分钟前
科研通AI6应助xiaoxinbaba采纳,获得10
2分钟前
2分钟前
一道光发布了新的文献求助30
2分钟前
大喜喜发布了新的文献求助10
2分钟前
深情安青应助sunfield2014采纳,获得10
2分钟前
Ava应助sunfield2014采纳,获得10
2分钟前
领导范儿应助sunfield2014采纳,获得10
2分钟前
华仔应助sunfield2014采纳,获得30
2分钟前
慕青应助一道光采纳,获得30
2分钟前
2分钟前
嘟嘟嘟嘟发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
3分钟前
小榕树完成签到,获得积分10
3分钟前
3分钟前
大西发布了新的文献求助10
3分钟前
Akim应助大西采纳,获得10
3分钟前
可乐完成签到 ,获得积分20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
StonesKing发布了新的文献求助10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
小马甲应助StonesKing采纳,获得10
5分钟前
6分钟前
StonesKing发布了新的文献求助10
6分钟前
NexusExplorer应助StonesKing采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561501
求助须知:如何正确求助?哪些是违规求助? 4646614
关于积分的说明 14678693
捐赠科研通 4587904
什么是DOI,文献DOI怎么找? 2517244
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461520