Head Pose Estimation Patterns as Deepfake Detectors

计算机科学 人工智能 掉期(金融) 模式识别(心理学) 一套 图像扭曲 机器学习 深度学习 姿势 考古 财务 经济 历史
作者
Federico Becattini,Carmen Bisogni,Vincenzo Loia,Chiara Pero,Fei Hao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3612928
摘要

The capacity to create ”fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the most performant approaches on the state of the art. Finally, using a machine learning technique based on K-Nearest Neighbor and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also offer a set of experiments for examining the feasibility of using deep learning techniques on such patterns. The findings reveal that the ability to recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset, that presents both identity swap and expression swap examples. The findings show that FSA-Net is an effective feature extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison to deepfake videos created using various methods or for different goals. In mean the method obtain 86% of accuracy on the identity swap task and 86.5% of accuracy on the expression swap. These findings offer up various possibilities and future directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and reliable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
就月听雨完成签到,获得积分10
4秒前
活泼飞鸟发布了新的文献求助50
6秒前
7秒前
可爱的函函应助mzy采纳,获得10
7秒前
jayus完成签到,获得积分10
7秒前
北雁完成签到,获得积分10
7秒前
眼睛大的尔蝶完成签到,获得积分10
8秒前
温馨发布了新的文献求助10
10秒前
追寻的纸鹤完成签到 ,获得积分10
16秒前
帅气的老五完成签到,获得积分10
18秒前
楠楠2001完成签到 ,获得积分10
19秒前
听风阁主发布了新的文献求助10
21秒前
赘婿应助YI点半的飞机场采纳,获得10
22秒前
未来的陈硕士完成签到,获得积分10
22秒前
23秒前
bkagyin应助贾舒涵采纳,获得10
24秒前
思源应助Luyao采纳,获得10
27秒前
JXY发布了新的文献求助10
27秒前
Driscoll完成签到,获得积分10
28秒前
28秒前
Tao完成签到,获得积分10
30秒前
31秒前
芝士雪豹完成签到,获得积分10
32秒前
Yoopakho发布了新的文献求助10
32秒前
roy应助搬石头采纳,获得10
35秒前
赘婿应助斯文的从彤采纳,获得10
35秒前
FashionBoy应助迷人的灵萱采纳,获得50
36秒前
float完成签到 ,获得积分10
38秒前
Wenpandaen应助hanleiharry1采纳,获得10
39秒前
不闻不问完成签到,获得积分10
42秒前
43秒前
44秒前
笨笨的开山完成签到,获得积分10
44秒前
陌路应助搬石头采纳,获得10
44秒前
Emon完成签到,获得积分10
46秒前
小马甲应助Nina采纳,获得10
48秒前
48秒前
贾舒涵发布了新的文献求助10
48秒前
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825