Head Pose Estimation Patterns as Deepfake Detectors

计算机科学 人工智能 主管(地质) 估计 计算机视觉 探测器 姿势 计算机图形学(图像) 地质学 电信 地貌学 经济 管理
作者
Federico Becattini,Carmen Bisogni,Vincenzo Loia,Chiara Pero,Fei Hao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (11): 1-24 被引量:11
标识
DOI:10.1145/3612928
摘要

The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the most performant approaches on the state-of-the-art. Finally, using a machine learning technique based on K-Nearest Neighbor and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also offer a set of experiments for examining the feasibility of using deep learning techniques on such patterns. The findings reveal that the ability to recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset that presents both identity swap and expression swap examples. The findings show that FSA-Net is an effective feature extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison to deepfake videos created using various methods or for different goals. In the mean the method obtain 86% of accuracy on the identity swap task and 86.5% of accuracy on the expression swap. These findings offer up various possibilities and future directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
严兴明完成签到,获得积分10
2秒前
大个应助黎金鑫采纳,获得10
4秒前
5秒前
迷路以筠完成签到,获得积分10
6秒前
6秒前
6秒前
柒月完成签到,获得积分10
7秒前
忆楠完成签到,获得积分20
7秒前
7秒前
大傻春完成签到 ,获得积分10
8秒前
MRCHONG发布了新的文献求助10
8秒前
墨翎完成签到,获得积分20
9秒前
程程程程完成签到,获得积分10
10秒前
忆楠发布了新的文献求助10
10秒前
可爱的函函应助柒月采纳,获得10
11秒前
NexusExplorer应助钟是一梦采纳,获得10
11秒前
zhangscience发布了新的文献求助10
13秒前
YYJ25发布了新的文献求助10
13秒前
科研通AI5应助liyanglin采纳,获得10
13秒前
13秒前
14秒前
shuangcheng完成签到,获得积分20
15秒前
可爱的函函应助周周采纳,获得10
16秒前
我是125应助昵称采纳,获得10
16秒前
17秒前
小赵发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
情怀应助zhangscience采纳,获得10
19秒前
Doctor_Mill完成签到,获得积分10
20秒前
20秒前
思源应助学习猴采纳,获得10
20秒前
Lavendar完成签到,获得积分10
20秒前
21秒前
21秒前
23秒前
钟是一梦发布了新的文献求助10
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849