Head Pose Estimation Patterns as Deepfake Detectors

计算机科学 人工智能 主管(地质) 估计 计算机视觉 探测器 姿势 计算机图形学(图像) 地质学 电信 地貌学 经济 管理
作者
Federico Becattini,Carmen Bisogni,Vincenzo Loia,Chiara Pero,Fei Hao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (11): 1-24 被引量:11
标识
DOI:10.1145/3612928
摘要

The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the most performant approaches on the state-of-the-art. Finally, using a machine learning technique based on K-Nearest Neighbor and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also offer a set of experiments for examining the feasibility of using deep learning techniques on such patterns. The findings reveal that the ability to recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset that presents both identity swap and expression swap examples. The findings show that FSA-Net is an effective feature extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison to deepfake videos created using various methods or for different goals. In the mean the method obtain 86% of accuracy on the identity swap task and 86.5% of accuracy on the expression swap. These findings offer up various possibilities and future directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿鑫完成签到 ,获得积分10
1秒前
过时的友卉完成签到,获得积分10
1秒前
zhenyu0430完成签到,获得积分10
1秒前
甜美冰旋发布了新的文献求助10
1秒前
1秒前
1秒前
阔达犀牛完成签到,获得积分10
2秒前
Ava应助ysq采纳,获得10
2秒前
万能图书馆应助积极以云采纳,获得10
2秒前
许个愿吧给许个愿吧的求助进行了留言
2秒前
11111完成签到,获得积分10
3秒前
3秒前
IanYoung71完成签到,获得积分10
3秒前
3秒前
帅气蓝完成签到,获得积分10
3秒前
3秒前
4秒前
无辜秋珊完成签到,获得积分10
4秒前
4秒前
hml123发布了新的文献求助30
4秒前
啥都不会完成签到,获得积分10
5秒前
5秒前
丫丫发布了新的文献求助10
5秒前
通过此项完成签到 ,获得积分10
6秒前
ROY完成签到,获得积分10
6秒前
小美最棒发布了新的文献求助10
6秒前
徐徐完成签到,获得积分10
7秒前
SciGPT应助风和日丽采纳,获得10
7秒前
silong发布了新的文献求助30
7秒前
豆花完成签到,获得积分10
7秒前
情怀应助亿眼万年采纳,获得10
8秒前
伊小美完成签到,获得积分10
8秒前
8秒前
李爱国应助甜美冰旋采纳,获得10
8秒前
啥都不会发布了新的文献求助10
8秒前
8秒前
ysq完成签到,获得积分20
8秒前
9秒前
蜜桃小丸子完成签到 ,获得积分10
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086