μ-STAR: A novel framework for spatio-temporal M/EEG source imaging optimized by microstates

计算机科学 脑磁图 脑电图 模式识别(心理学) 贝叶斯概率 水准点(测量) 人工智能 时间分辨率 算法 物理 大地测量学 心理学 量子力学 精神科 地理
作者
Feng Zhao,Sujie Wang,Linze Qian,Mengru Xu,Kuijun Wu,Iοannis Kakkos,Cuntai Guan,Yu Sun
出处
期刊:NeuroImage [Elsevier]
卷期号:282: 120372-120372 被引量:1
标识
DOI:10.1016/j.neuroimage.2023.120372
摘要

Source imaging of Electroencephalography (EEG) and Magnetoencephalography (MEG) provides a noninvasive way of monitoring brain activities with high spatial and temporal resolution. In order to address this highly ill-posed problem, conventional source imaging models adopted spatio-temporal constraints that assume spatial stability of the source activities, neglecting the transient characteristics of M/EEG. In this work, a novel source imaging method μ-STAR that includes a microstate analysis and a spatio-temporal Bayesian model was introduced to address this problem. Specifically, the microstate analysis was applied to achieve automatic determination of time window length with quasi-stable source activity pattern for optimal reconstruction of source dynamics. Then a user-specific spatial prior and data-driven temporal basis functions were utilized to characterize the spatio-temporal information of sources within each state. The solution of the source reconstruction was obtained through a computationally efficient algorithm based upon variational Bayesian and convex analysis. The performance of the μ-STAR was first assessed through numerical simulations, where we found that the determination and inclusion of optimal temporal length in the spatio-temporal prior significantly improved the performance of source reconstruction. More importantly, the μ-STAR model achieved robust performance under various settings (i.e., source numbers/areas, SNR levels, and source depth) with fast convergence speed compared with five widely-used benchmark models (including wMNE, STV, SBL, BESTIES, & SI-STBF). Additional validations on real data were then performed on two publicly-available datasets (including block-design face-processing ERP and continuous resting-state EEG). The reconstructed source activities exhibited spatial and temporal neurophysiologically plausible results consistent with previously-revealed neural substrates, thereby further proving the feasibility of the μ-STAR model for source imaging in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
良辰应助尹博士采纳,获得10
1秒前
chenxi完成签到 ,获得积分10
1秒前
1秒前
NexusExplorer应助肘子采纳,获得10
2秒前
脑洞疼应助守着她可好采纳,获得10
3秒前
传奇3应助火山排骨采纳,获得10
3秒前
Orange应助细心蚂蚁采纳,获得10
4秒前
4秒前
酷波er应助勤劳的飞鸟采纳,获得10
4秒前
4秒前
6秒前
晴晴完成签到,获得积分10
6秒前
Splaink发布了新的文献求助10
6秒前
afeifei完成签到,获得积分10
8秒前
李小狼不浪完成签到,获得积分10
8秒前
CipherSage应助顺心夜阑采纳,获得30
9秒前
朱朱完成签到,获得积分20
10秒前
11秒前
周舟发布了新的文献求助10
12秒前
12秒前
dd完成签到,获得积分10
12秒前
精明如波完成签到,获得积分10
13秒前
白契完成签到 ,获得积分10
14秒前
阿盛发布了新的文献求助10
14秒前
认真搞科研啦完成签到,获得积分10
15秒前
慕青应助Echo采纳,获得10
15秒前
酷炫的傲芙完成签到,获得积分20
15秒前
Leif应助平常的无极采纳,获得10
16秒前
Owen应助正直远望采纳,获得10
16秒前
16秒前
WangQian发布了新的文献求助10
17秒前
wk完成签到,获得积分10
17秒前
星星完成签到,获得积分20
17秒前
赘婿应助xiaolian采纳,获得10
18秒前
19秒前
19秒前
zhenliu发布了新的文献求助10
19秒前
领导范儿应助Zachia采纳,获得10
19秒前
拼搏向上完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292629
求助须知:如何正确求助?哪些是违规求助? 2928963
关于积分的说明 8439271
捐赠科研通 2601028
什么是DOI,文献DOI怎么找? 1419441
科研通“疑难数据库(出版商)”最低求助积分说明 660310
邀请新用户注册赠送积分活动 642965