计算机科学
脑磁图
脑电图
模式识别(心理学)
贝叶斯概率
水准点(测量)
人工智能
时间分辨率
算法
物理
大地测量学
心理学
量子力学
精神科
地理
作者
Feng Zhao,Sujie Wang,Linze Qian,Mengru Xu,Kuijun Wu,Iοannis Kakkos,Cuntai Guan,Yu Sun
出处
期刊:NeuroImage
[Elsevier]
日期:2023-09-24
卷期号:282: 120372-120372
被引量:1
标识
DOI:10.1016/j.neuroimage.2023.120372
摘要
Source imaging of Electroencephalography (EEG) and Magnetoencephalography (MEG) provides a noninvasive way of monitoring brain activities with high spatial and temporal resolution. In order to address this highly ill-posed problem, conventional source imaging models adopted spatio-temporal constraints that assume spatial stability of the source activities, neglecting the transient characteristics of M/EEG. In this work, a novel source imaging method μ-STAR that includes a microstate analysis and a spatio-temporal Bayesian model was introduced to address this problem. Specifically, the microstate analysis was applied to achieve automatic determination of time window length with quasi-stable source activity pattern for optimal reconstruction of source dynamics. Then a user-specific spatial prior and data-driven temporal basis functions were utilized to characterize the spatio-temporal information of sources within each state. The solution of the source reconstruction was obtained through a computationally efficient algorithm based upon variational Bayesian and convex analysis. The performance of the μ-STAR was first assessed through numerical simulations, where we found that the determination and inclusion of optimal temporal length in the spatio-temporal prior significantly improved the performance of source reconstruction. More importantly, the μ-STAR model achieved robust performance under various settings (i.e., source numbers/areas, SNR levels, and source depth) with fast convergence speed compared with five widely-used benchmark models (including wMNE, STV, SBL, BESTIES, & SI-STBF). Additional validations on real data were then performed on two publicly-available datasets (including block-design face-processing ERP and continuous resting-state EEG). The reconstructed source activities exhibited spatial and temporal neurophysiologically plausible results consistent with previously-revealed neural substrates, thereby further proving the feasibility of the μ-STAR model for source imaging in various applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI