μ-STAR: A novel framework for spatio-temporal M/EEG source imaging optimized by microstates

计算机科学 脑磁图 脑电图 模式识别(心理学) 贝叶斯概率 水准点(测量) 人工智能 时间分辨率 算法 物理 大地测量学 心理学 量子力学 精神科 地理
作者
Feng Zhao,Sujie Wang,Linze Qian,Mengru Xu,Kuijun Wu,Iοannis Kakkos,Cuntai Guan,Yu Sun
出处
期刊:NeuroImage [Elsevier BV]
卷期号:282: 120372-120372 被引量:1
标识
DOI:10.1016/j.neuroimage.2023.120372
摘要

Source imaging of Electroencephalography (EEG) and Magnetoencephalography (MEG) provides a noninvasive way of monitoring brain activities with high spatial and temporal resolution. In order to address this highly ill-posed problem, conventional source imaging models adopted spatio-temporal constraints that assume spatial stability of the source activities, neglecting the transient characteristics of M/EEG. In this work, a novel source imaging method μ-STAR that includes a microstate analysis and a spatio-temporal Bayesian model was introduced to address this problem. Specifically, the microstate analysis was applied to achieve automatic determination of time window length with quasi-stable source activity pattern for optimal reconstruction of source dynamics. Then a user-specific spatial prior and data-driven temporal basis functions were utilized to characterize the spatio-temporal information of sources within each state. The solution of the source reconstruction was obtained through a computationally efficient algorithm based upon variational Bayesian and convex analysis. The performance of the μ-STAR was first assessed through numerical simulations, where we found that the determination and inclusion of optimal temporal length in the spatio-temporal prior significantly improved the performance of source reconstruction. More importantly, the μ-STAR model achieved robust performance under various settings (i.e., source numbers/areas, SNR levels, and source depth) with fast convergence speed compared with five widely-used benchmark models (including wMNE, STV, SBL, BESTIES, & SI-STBF). Additional validations on real data were then performed on two publicly-available datasets (including block-design face-processing ERP and continuous resting-state EEG). The reconstructed source activities exhibited spatial and temporal neurophysiologically plausible results consistent with previously-revealed neural substrates, thereby further proving the feasibility of the μ-STAR model for source imaging in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
goodbuhui完成签到,获得积分10
4秒前
kcccc发布了新的文献求助10
4秒前
5秒前
Amanda发布了新的文献求助10
10秒前
Jasper应助ssss采纳,获得10
10秒前
10秒前
11秒前
飘逸楷瑞发布了新的文献求助20
11秒前
12秒前
sss完成签到,获得积分10
15秒前
小二郎应助美丽的凌蝶采纳,获得10
15秒前
丘比特应助合适成风采纳,获得10
15秒前
15秒前
17秒前
Lost发布了新的文献求助10
17秒前
温冰雪应助晓晓采纳,获得10
19秒前
唐难破发布了新的文献求助10
20秒前
20秒前
Pauline完成签到,获得积分10
22秒前
今今今今朝完成签到,获得积分10
22秒前
Fuckacdemic完成签到 ,获得积分10
22秒前
22秒前
23秒前
iroko发布了新的文献求助10
25秒前
527应助科研通管家采纳,获得20
26秒前
刘刘发布了新的文献求助10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
coolkid应助科研通管家采纳,获得10
27秒前
ceeray23应助科研通管家采纳,获得10
27秒前
coolkid应助科研通管家采纳,获得10
27秒前
maguodrgon应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
27秒前
ceeray23应助科研通管家采纳,获得10
27秒前
coolkid应助科研通管家采纳,获得10
27秒前
所所应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
哎呀呀呀发布了新的文献求助100
27秒前
CodeCraft应助唐难破采纳,获得10
27秒前
Joseph完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951026
求助须知:如何正确求助?哪些是违规求助? 3496458
关于积分的说明 11082124
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801003