Optimal monitoring and attack detection of networks modeled by Bayesian attack graphs

计算机科学 概率逻辑 贝叶斯网络 网络安全 模型攻击 网络拓扑 卡尔曼滤波器 计算机安全 人工智能 计算机网络
作者
Armita Kazeminajafabadi,Mahdi Imani
出处
期刊:Cybersecurity [Springer Nature]
卷期号:6 (1)
标识
DOI:10.1186/s42400-023-00155-y
摘要

Abstract Early attack detection is essential to ensure the security of complex networks, especially those in critical infrastructures. This is particularly crucial in networks with multi-stage attacks, where multiple nodes are connected to external sources, through which attacks could enter and quickly spread to other network elements. Bayesian attack graphs (BAGs) are powerful models for security risk assessment and mitigation in complex networks, which provide the probabilistic model of attackers’ behavior and attack progression in the network. Most attack detection techniques developed for BAGs rely on the assumption that network compromises will be detected through routine monitoring, which is unrealistic given the ever-growing complexity of threats. This paper derives the optimal minimum mean square error (MMSE) attack detection and monitoring policy for the most general form of BAGs. By exploiting the structure of BAGs and their partial and imperfect monitoring capacity, the proposed detection policy achieves the MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering. An adaptive resource monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined value. Exact and efficient matrix-form computations of the proposed policies are provided, and their high performance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources using synthetic Bayesian attack graphs with different topologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大胆夜绿发布了新的文献求助10
刚刚
Dr终年完成签到,获得积分10
刚刚
katharsis完成签到,获得积分10
刚刚
Ricardo发布了新的文献求助10
1秒前
歪歪象发布了新的文献求助10
1秒前
zeno123456完成签到,获得积分10
1秒前
陈某某发布了新的文献求助10
1秒前
2秒前
he完成签到,获得积分10
2秒前
2秒前
科研小民工应助忍冬半夏采纳,获得30
2秒前
小马甲应助年华采纳,获得10
2秒前
2秒前
CipherSage应助开放的听枫采纳,获得10
2秒前
Never stall发布了新的文献求助10
2秒前
2秒前
Jolene66发布了新的文献求助10
3秒前
zy完成签到,获得积分10
3秒前
Adzuki0812完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
Anne应助哇哈哈采纳,获得10
5秒前
四季刻歌完成签到,获得积分10
5秒前
忆点儿孤狼完成签到,获得积分10
5秒前
搜集达人应助高贵的迎蕾采纳,获得10
5秒前
华仔应助一平采纳,获得10
6秒前
汉堡包应助bluer采纳,获得10
6秒前
6秒前
6秒前
直率心锁完成签到,获得积分10
6秒前
7秒前
李若水完成签到,获得积分10
7秒前
默默水之发布了新的文献求助10
7秒前
zink发布了新的文献求助10
8秒前
9秒前
映寒完成签到,获得积分10
9秒前
JamesPei应助幸福胡萝卜采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678