Optimal monitoring and attack detection of networks modeled by Bayesian attack graphs

计算机科学 概率逻辑 贝叶斯网络 网络安全 模型攻击 网络拓扑 卡尔曼滤波器 计算机安全 人工智能 计算机网络
作者
Armita Kazeminajafabadi,Mahdi Imani
出处
期刊:Cybersecurity [Springer Nature]
卷期号:6 (1)
标识
DOI:10.1186/s42400-023-00155-y
摘要

Abstract Early attack detection is essential to ensure the security of complex networks, especially those in critical infrastructures. This is particularly crucial in networks with multi-stage attacks, where multiple nodes are connected to external sources, through which attacks could enter and quickly spread to other network elements. Bayesian attack graphs (BAGs) are powerful models for security risk assessment and mitigation in complex networks, which provide the probabilistic model of attackers’ behavior and attack progression in the network. Most attack detection techniques developed for BAGs rely on the assumption that network compromises will be detected through routine monitoring, which is unrealistic given the ever-growing complexity of threats. This paper derives the optimal minimum mean square error (MMSE) attack detection and monitoring policy for the most general form of BAGs. By exploiting the structure of BAGs and their partial and imperfect monitoring capacity, the proposed detection policy achieves the MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering. An adaptive resource monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined value. Exact and efficient matrix-form computations of the proposed policies are provided, and their high performance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources using synthetic Bayesian attack graphs with different topologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老陈发布了新的文献求助10
刚刚
无敌小宽哥完成签到,获得积分20
刚刚
1秒前
panhanfu完成签到,获得积分10
1秒前
这个大头张呀完成签到,获得积分10
2秒前
李健应助IAMXC采纳,获得10
3秒前
3秒前
云端完成签到,获得积分10
4秒前
wjx发布了新的文献求助10
4秒前
现代清涟发布了新的文献求助10
4秒前
wjx发布了新的文献求助10
4秒前
冷艳后妈发布了新的文献求助10
4秒前
zz完成签到,获得积分10
4秒前
4秒前
沉静豆芽完成签到,获得积分10
5秒前
李健的小迷弟应助lgold采纳,获得10
5秒前
活泼冬云发布了新的文献求助10
6秒前
诺之完成签到,获得积分10
6秒前
哈哈完成签到,获得积分10
6秒前
大力沛萍完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助清爽灰狼采纳,获得10
8秒前
sdbz001完成签到,获得积分10
8秒前
zhing完成签到,获得积分10
8秒前
8秒前
完美世界应助honphyjiang采纳,获得10
8秒前
开心potato完成签到,获得积分20
9秒前
wuwa应助小巧的柠檬采纳,获得10
9秒前
顺心的水之完成签到,获得积分10
9秒前
研友_LMBAXn发布了新的文献求助30
9秒前
狂野的冰真完成签到 ,获得积分10
9秒前
852应助wcywd采纳,获得10
10秒前
乐观白桃完成签到,获得积分10
10秒前
打打应助现代元灵采纳,获得10
10秒前
11秒前
黎书禾完成签到,获得积分10
11秒前
李健应助wjx采纳,获得10
12秒前
幽默鱼完成签到,获得积分10
12秒前
Ava应助wjx采纳,获得10
12秒前
思源应助wjx采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587