亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chuan发布了新的文献求助10
刚刚
CMQ2021102261发布了新的文献求助10
3秒前
子焱完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
15秒前
22秒前
西升东落完成签到 ,获得积分10
23秒前
jueshadi完成签到 ,获得积分10
26秒前
酷波er应助科研通管家采纳,获得10
27秒前
Criminology34应助科研通管家采纳,获得10
27秒前
27秒前
Link发布了新的文献求助10
27秒前
Criminology34应助加油小鹿采纳,获得10
28秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
37秒前
38秒前
科研通AI2S应助Eden采纳,获得10
40秒前
shun发布了新的文献求助10
46秒前
willlee完成签到 ,获得积分10
49秒前
小白菜完成签到,获得积分10
49秒前
57秒前
高高烙完成签到 ,获得积分10
57秒前
Eden发布了新的文献求助10
1分钟前
刘振坤完成签到,获得积分10
1分钟前
Lucas应助CMQ2021102261采纳,获得10
1分钟前
1分钟前
英俊的铭应助jj采纳,获得10
1分钟前
1分钟前
领导范儿应助Eden采纳,获得10
1分钟前
1分钟前
远远发布了新的文献求助10
1分钟前
CC发布了新的文献求助10
1分钟前
jj发布了新的文献求助10
1分钟前
远远完成签到,获得积分10
1分钟前
1分钟前
1分钟前
CodeCraft应助认真的紫寒采纳,获得10
1分钟前
绿色植物发布了新的文献求助10
1分钟前
闪闪发布了新的文献求助10
1分钟前
1分钟前
zsy发布了新的文献求助10
1分钟前
level完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622185
求助须知:如何正确求助?哪些是违规求助? 4707110
关于积分的说明 14938651
捐赠科研通 4768595
什么是DOI,文献DOI怎么找? 2552156
邀请新用户注册赠送积分活动 1514317
关于科研通互助平台的介绍 1475005