An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一朵发布了新的文献求助10
1秒前
Gfi完成签到,获得积分10
1秒前
NexusExplorer应助罗擎采纳,获得10
1秒前
1秒前
阿巧完成签到,获得积分10
1秒前
zhiyu发布了新的文献求助10
2秒前
科研通AI6应助一颗小花生采纳,获得10
2秒前
niuniu完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
今后应助友好的天奇采纳,获得10
4秒前
NSstupid发布了新的文献求助10
4秒前
鲤鱼山芙发布了新的文献求助150
4秒前
12ss发布了新的文献求助10
5秒前
阿巧发布了新的文献求助10
6秒前
希淇发布了新的文献求助10
7秒前
swat发布了新的文献求助10
7秒前
我是老大应助lvzhihao采纳,获得10
7秒前
7秒前
7秒前
浮游应助czx采纳,获得10
8秒前
niuniu发布了新的文献求助10
8秒前
杜杜要搞科研完成签到,获得积分10
8秒前
zhiyu完成签到,获得积分10
10秒前
hh发布了新的文献求助10
12秒前
罗擎发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
14秒前
高8888888完成签到,获得积分10
14秒前
14秒前
15秒前
科研通AI6应助杨梅芳采纳,获得10
16秒前
renee_yok完成签到 ,获得积分10
18秒前
天才小霸发布了新的文献求助10
18秒前
18秒前
18秒前
NexusExplorer应助书记采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462674
求助须知:如何正确求助?哪些是违规求助? 4567376
关于积分的说明 14310095
捐赠科研通 4493273
什么是DOI,文献DOI怎么找? 2461518
邀请新用户注册赠送积分活动 1450559
关于科研通互助平台的介绍 1425885