已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
4秒前
科研通AI2S应助汤泽琪采纳,获得10
4秒前
Lucas应助汤泽琪采纳,获得10
4秒前
无花果应助汤泽琪采纳,获得10
4秒前
smottom应助汤泽琪采纳,获得10
4秒前
我是老大应助汤泽琪采纳,获得10
5秒前
小马甲应助汤泽琪采纳,获得10
5秒前
JamesPei应助汤泽琪采纳,获得10
5秒前
隐形曼青应助汤泽琪采纳,获得10
5秒前
乐乐应助汤泽琪采纳,获得10
5秒前
852应助汤泽琪采纳,获得10
5秒前
6秒前
自然秋柳完成签到 ,获得积分10
8秒前
8秒前
我爱Chem完成签到 ,获得积分10
10秒前
善学以致用应助好好好采纳,获得10
11秒前
11秒前
短短急个球完成签到,获得积分10
14秒前
天道酬勤完成签到 ,获得积分10
14秒前
科研通AI2S应助stone12306采纳,获得10
15秒前
18秒前
Ade阿德发布了新的文献求助10
18秒前
超帅的龙猫完成签到,获得积分10
18秒前
19秒前
jyoraku发布了新的文献求助10
24秒前
28秒前
28秒前
wisher完成签到 ,获得积分10
29秒前
Ade阿德完成签到,获得积分10
29秒前
30秒前
jyoraku完成签到,获得积分10
31秒前
yuwen发布了新的文献求助10
34秒前
plant完成签到 ,获得积分10
34秒前
慕青应助kelvin采纳,获得10
35秒前
冷酷的树叶完成签到 ,获得积分10
35秒前
39秒前
杀殿完成签到 ,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629