An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
念y完成签到 ,获得积分10
2秒前
2秒前
5秒前
香蕉觅云应助11111采纳,获得10
6秒前
6秒前
7秒前
鹊起发布了新的文献求助10
7秒前
谢桓完成签到 ,获得积分10
7秒前
8秒前
8秒前
嘿嘿发布了新的文献求助10
8秒前
8秒前
9秒前
xiaoxu发布了新的文献求助10
10秒前
结实梦琪发布了新的文献求助10
11秒前
11秒前
scuter发布了新的文献求助20
12秒前
lbx发布了新的文献求助10
12秒前
火火完成签到 ,获得积分10
12秒前
现代的雪糕完成签到,获得积分10
13秒前
猛发sci完成签到,获得积分10
13秒前
mcsmdxs发布了新的文献求助10
13秒前
ww应助壮观砖家采纳,获得20
14秒前
陈佳利发布了新的文献求助30
14秒前
小杨完成签到,获得积分20
15秒前
15秒前
大力麦片完成签到,获得积分10
15秒前
我是老大应助关乔采纳,获得10
15秒前
Hu发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
善学以致用应助夹心饼干采纳,获得30
17秒前
聪明的念芹完成签到,获得积分20
18秒前
19秒前
Charlene完成签到,获得积分10
20秒前
mumu完成签到,获得积分10
20秒前
20秒前
墨尘发布了新的文献求助30
20秒前
完美世界应助hxx采纳,获得10
20秒前
李爱国应助hxx采纳,获得30
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620818
求助须知:如何正确求助?哪些是违规求助? 4705416
关于积分的说明 14931932
捐赠科研通 4763450
什么是DOI,文献DOI怎么找? 2551239
邀请新用户注册赠送积分活动 1513799
关于科研通互助平台的介绍 1474704