An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107784-107784 被引量:7
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susan完成签到 ,获得积分10
刚刚
在水一方应助物化小子采纳,获得10
刚刚
ChenLi完成签到,获得积分10
刚刚
英姑应助璀璨c采纳,获得10
1秒前
康琦琦完成签到 ,获得积分10
1秒前
1秒前
非酋发布了新的文献求助10
2秒前
cjlce完成签到,获得积分20
2秒前
kkk发布了新的文献求助10
2秒前
rosalieshi应助地山采纳,获得30
3秒前
欧阳发布了新的文献求助10
4秒前
ciell完成签到,获得积分10
5秒前
二十八画生完成签到,获得积分10
5秒前
mouset270发布了新的文献求助30
5秒前
花椒完成签到,获得积分10
5秒前
5秒前
所所应助结实博采纳,获得10
6秒前
7秒前
泥娃娃完成签到 ,获得积分10
8秒前
如意冰棍完成签到 ,获得积分10
8秒前
8秒前
kkk关闭了kkk文献求助
9秒前
9秒前
顾矜应助fwt采纳,获得10
9秒前
星辰大海应助根决采纳,获得10
10秒前
10秒前
www发布了新的文献求助10
11秒前
我有一头小毛驴完成签到,获得积分10
11秒前
黄多多完成签到,获得积分10
12秒前
乐乐应助mouset270采纳,获得30
13秒前
慕青应助112233采纳,获得10
13秒前
斯文败类应助单hx采纳,获得10
14秒前
科大小刘完成签到 ,获得积分10
14秒前
潇潇暮雨发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
小马甲应助可耐的白山采纳,获得10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143406
求助须知:如何正确求助?哪些是违规求助? 2794708
关于积分的说明 7812043
捐赠科研通 2450840
什么是DOI,文献DOI怎么找? 1304134
科研通“疑难数据库(出版商)”最低求助积分说明 627179
版权声明 601386