清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杆杆完成签到 ,获得积分10
27秒前
30秒前
可爱沛蓝完成签到 ,获得积分10
1分钟前
局内人完成签到,获得积分10
1分钟前
略微妙蛙完成签到 ,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
Monicadd完成签到 ,获得积分10
2分钟前
Ivan完成签到 ,获得积分10
2分钟前
Wang完成签到 ,获得积分20
2分钟前
方白秋完成签到,获得积分0
2分钟前
科研通AI6应助噜噜大王采纳,获得10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
4分钟前
ding应助科研通管家采纳,获得10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
4分钟前
bju发布了新的文献求助10
4分钟前
bju完成签到,获得积分10
4分钟前
wang1030完成签到 ,获得积分10
4分钟前
噜噜大王发布了新的文献求助10
4分钟前
Heba完成签到,获得积分20
5分钟前
lrid完成签到 ,获得积分10
5分钟前
yxy完成签到 ,获得积分10
5分钟前
希望天下0贩的0应助Claudia采纳,获得10
5分钟前
Heba发布了新的文献求助30
5分钟前
5分钟前
6分钟前
orixero应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
Claudia发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
紫熊完成签到,获得积分10
6分钟前
6分钟前
zzhui完成签到,获得积分10
6分钟前
Vintoe完成签到 ,获得积分10
6分钟前
小燕子完成签到 ,获得积分10
7分钟前
Owen应助catherine采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568283
求助须知:如何正确求助?哪些是违规求助? 4652769
关于积分的说明 14702004
捐赠科研通 4594595
什么是DOI,文献DOI怎么找? 2521083
邀请新用户注册赠送积分活动 1492900
关于科研通互助平台的介绍 1463715