已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助过时的笙采纳,获得10
刚刚
杨东旭完成签到,获得积分20
刚刚
1秒前
谐音梗别扣钱完成签到 ,获得积分10
2秒前
qingmoheng应助Chat采纳,获得10
2秒前
SciKid524完成签到 ,获得积分10
3秒前
agf发布了新的文献求助30
3秒前
铭铭完成签到 ,获得积分10
3秒前
Frog完成签到,获得积分10
4秒前
杨东旭发布了新的文献求助10
4秒前
逮劳完成签到 ,获得积分10
4秒前
cc完成签到 ,获得积分10
4秒前
Owen应助juqiu采纳,获得10
6秒前
酷波er应助juqiu采纳,获得10
6秒前
烟花应助juqiu采纳,获得10
7秒前
一只西瓜茶完成签到,获得积分20
7秒前
充电宝应助无奈曼云采纳,获得10
9秒前
脱锦涛完成签到 ,获得积分10
10秒前
领导范儿应助Frog采纳,获得10
12秒前
14秒前
nnmmuu完成签到,获得积分10
14秒前
浮浮世世完成签到,获得积分10
15秒前
Jim完成签到,获得积分10
16秒前
十一完成签到 ,获得积分10
18秒前
丰富的谷菱完成签到,获得积分10
19秒前
xyyyy完成签到 ,获得积分10
19秒前
池木完成签到 ,获得积分10
19秒前
利好完成签到 ,获得积分10
20秒前
不学习的牛蛙完成签到 ,获得积分10
21秒前
NexusExplorer应助GQ采纳,获得10
22秒前
22秒前
于涵艺完成签到,获得积分10
25秒前
26秒前
无知者海生完成签到 ,获得积分10
26秒前
27秒前
27秒前
飞快的孱完成签到,获得积分10
27秒前
28秒前
尤寄风发布了新的文献求助10
28秒前
傅梦槐完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587212
关于积分的说明 14413030
捐赠科研通 4518471
什么是DOI,文献DOI怎么找? 2475801
邀请新用户注册赠送积分活动 1461397
关于科研通互助平台的介绍 1434283