An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助魏伯安采纳,获得10
1秒前
1秒前
神可馨完成签到 ,获得积分10
2秒前
Hangerli发布了新的文献求助20
2秒前
HealthyCH完成签到,获得积分10
2秒前
li完成签到,获得积分10
3秒前
4秒前
ononon发布了新的文献求助10
6秒前
6秒前
liu完成签到,获得积分10
8秒前
LWJ发布了新的文献求助10
9秒前
10秒前
大反应釜完成签到,获得积分10
10秒前
TT发布了新的文献求助10
13秒前
Jenny发布了新的文献求助10
15秒前
15秒前
完美凝竹发布了新的文献求助10
15秒前
我是站长才怪应助细腻沅采纳,获得10
16秒前
JG完成签到 ,获得积分10
16秒前
hhh完成签到,获得积分20
16秒前
科研通AI5应助想瘦的海豹采纳,获得10
17秒前
随性完成签到 ,获得积分10
17秒前
自由的信仰完成签到,获得积分10
18秒前
20秒前
21秒前
21秒前
夏夏发布了新的文献求助10
22秒前
打打应助Hangerli采纳,获得10
24秒前
完美凝竹完成签到,获得积分10
25秒前
zfzf0422发布了新的文献求助10
26秒前
蜘蛛道理完成签到 ,获得积分10
26秒前
冷傲迎梦发布了新的文献求助10
27秒前
852应助MEME采纳,获得10
27秒前
Godzilla发布了新的文献求助10
27秒前
大模型应助咕噜仔采纳,获得10
28秒前
蒋时晏应助pharmstudent采纳,获得30
28秒前
29秒前
忘羡222发布了新的文献求助20
30秒前
魏伯安发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824