An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liucibao发布了新的文献求助10
1秒前
吉星完成签到,获得积分10
1秒前
迪迪syh发布了新的文献求助10
1秒前
舆上帝同行完成签到,获得积分10
2秒前
小蘑菇应助Allen采纳,获得10
2秒前
张凯欣发布了新的文献求助30
3秒前
JamesPei应助王松桐采纳,获得10
4秒前
4秒前
5秒前
luckyblue发布了新的文献求助10
5秒前
TISFJ给TISFJ的求助进行了留言
6秒前
贾慧莲发布了新的文献求助10
6秒前
HS完成签到,获得积分10
6秒前
季风气候完成签到 ,获得积分10
6秒前
6秒前
wintersss完成签到,获得积分10
6秒前
7秒前
Lucas应助demoliu采纳,获得10
7秒前
迪迪syh完成签到,获得积分10
7秒前
小马甲应助英勇的凌蝶采纳,获得10
7秒前
lalala完成签到,获得积分10
8秒前
Till完成签到 ,获得积分10
8秒前
Hello应助胡豆豆采纳,获得10
9秒前
tzy完成签到,获得积分10
9秒前
9秒前
YLT发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
12发布了新的文献求助10
12秒前
12秒前
lalala发布了新的文献求助10
12秒前
HS发布了新的文献求助30
13秒前
温暖的蓝天完成签到,获得积分10
14秒前
徐昊楠发布了新的文献求助10
15秒前
王松桐发布了新的文献求助10
16秒前
16秒前
奥丁蒂法完成签到,获得积分10
17秒前
浮游应助钱念波采纳,获得10
17秒前
能能鹤完成签到 ,获得积分10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564