An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet

计算机科学 心跳 节拍(声学) 人工智能 隐马尔可夫模型 左束支阻滞 模式识别(心理学) 马尔可夫链 语音识别 心房颤动 机器学习 心脏病学 医学 心力衰竭 计算机安全 物理 声学
作者
Lipeng Ji,Zhonghao Wei,Jian Jun Hao,Chunli Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107784-107784 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107784
摘要

Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population.This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability.The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies.The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卷卷完成签到,获得积分10
1秒前
2秒前
深情安青应助笨鸟先飞采纳,获得10
2秒前
3秒前
3秒前
五十完成签到,获得积分10
3秒前
宇文沛岚完成签到,获得积分10
3秒前
hejeamy发布了新的文献求助10
3秒前
3秒前
4秒前
英俊的铭应助无名采纳,获得10
4秒前
4秒前
Yi发布了新的文献求助10
5秒前
6秒前
比卜不完成签到,获得积分10
6秒前
弗洛伊德完成签到 ,获得积分10
7秒前
Yi发布了新的文献求助10
7秒前
7秒前
7秒前
脑洞疼应助Alan采纳,获得10
8秒前
英俊的铭应助LaLaC采纳,获得10
8秒前
8秒前
爆米花应助Monica采纳,获得10
9秒前
9秒前
Anoxra完成签到 ,获得积分10
10秒前
不会发芽的土豆泥完成签到,获得积分10
10秒前
Alvin完成签到,获得积分10
10秒前
科研通AI6应助xzl采纳,获得30
10秒前
小李完成签到,获得积分10
11秒前
11秒前
是真的不吃鱼完成签到 ,获得积分10
11秒前
msk完成签到 ,获得积分10
12秒前
发发旦旦完成签到,获得积分10
12秒前
wen发布了新的文献求助10
12秒前
不安的宛丝完成签到,获得积分10
13秒前
李健应助心楠采纳,获得30
13秒前
dandandan完成签到 ,获得积分10
13秒前
bbb发布了新的文献求助10
13秒前
笨鸟先飞发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186