Digital twin for autonomous collaborative robot by using synthetic data and reinforcement learning

机器人 人工智能 计算机科学 机器人学 对象(语法) 点云 领域(数学) 强化学习 机器学习 计算机视觉 人机交互 数学 纯数学
作者
Kyusung Kim,Min-Ho Choi,Jumyung Um
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:85: 102632-102632 被引量:2
标识
DOI:10.1016/j.rcim.2023.102632
摘要

Training robots in real-world environments can be challenging due to time and cost constraints. To overcome these limitations, robots can be trained in virtual environments using Reinforcement Learning (RL). However, this approach faces a significant challenge in obtaining suitable data. This paper proposes a novel method for training collaborative robots in virtual environments using synthetic data and the point cloud framework. The proposed method is divided into four stages: data generation, 3D object classification, robot training, and integration. The first stage of the proposed method is data generation, where synthetic data is generated to resemble real-world scenarios. This data is then used to train robots in virtual environments. The second stage is 3D object classification, where the generated data is used to classify objects in 3D space. In the third stage, robots are trained using RL algorithms, which are based on the generated data and the 3D object classifications. Finally, the effectiveness of the proposed method is integrated in the fourth stage. This proposed method has the potential to be a significant contribution to the field of robotics and 3D computer vision. By using synthetic data and the point cloud framework, the proposed method offers an efficient and cost-effective solution for training robots in virtual environments. The ability to reduce the time and cost required for training robots in real-world environments is a major advantage of this proposed method, and has the potential to revolutionize the field of robotics and 3D computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
克利夫兰发布了新的文献求助10
1秒前
甜甜醉波发布了新的文献求助10
1秒前
Akim应助义气冷菱采纳,获得10
1秒前
栾小鱼完成签到,获得积分10
2秒前
Hello应助阿琳采纳,获得10
3秒前
瓷穹发布了新的文献求助10
3秒前
4秒前
心灵美的涑完成签到 ,获得积分10
4秒前
zmuzhang2019发布了新的文献求助10
5秒前
6秒前
哑铃完成签到,获得积分10
6秒前
Hoooo...发布了新的文献求助10
6秒前
8秒前
科研通AI2S应助风yiya采纳,获得10
8秒前
顾矜应助Linda采纳,获得10
9秒前
KK完成签到,获得积分10
10秒前
ZXL发布了新的文献求助10
10秒前
积极书双发布了新的文献求助10
11秒前
科目三应助Hoooo...采纳,获得10
12秒前
小马甲应助Dr.Lyo采纳,获得10
12秒前
Lucas应助呜啦啦49231采纳,获得10
12秒前
13秒前
zmuzhang2019完成签到,获得积分10
14秒前
个性的紫菜应助12采纳,获得20
15秒前
15秒前
婷婷完成签到,获得积分10
16秒前
小娃完成签到 ,获得积分10
16秒前
小问号完成签到,获得积分10
17秒前
vsbsjj完成签到,获得积分10
17秒前
过过过发布了新的文献求助30
17秒前
哑铃发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
丁小只完成签到,获得积分10
19秒前
jinyy发布了新的文献求助10
20秒前
邱志鸿发布了新的文献求助10
20秒前
嗨哈尼发布了新的文献求助10
21秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052