已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Digital twin for autonomous collaborative robot by using synthetic data and reinforcement learning

机器人 人工智能 计算机科学 机器人学 对象(语法) 点云 领域(数学) 强化学习 机器学习 计算机视觉 人机交互 数学 纯数学
作者
Kyusung Kim,Min-Ho Choi,Jumyung Um
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:85: 102632-102632 被引量:9
标识
DOI:10.1016/j.rcim.2023.102632
摘要

Training robots in real-world environments can be challenging due to time and cost constraints. To overcome these limitations, robots can be trained in virtual environments using Reinforcement Learning (RL). However, this approach faces a significant challenge in obtaining suitable data. This paper proposes a novel method for training collaborative robots in virtual environments using synthetic data and the point cloud framework. The proposed method is divided into four stages: data generation, 3D object classification, robot training, and integration. The first stage of the proposed method is data generation, where synthetic data is generated to resemble real-world scenarios. This data is then used to train robots in virtual environments. The second stage is 3D object classification, where the generated data is used to classify objects in 3D space. In the third stage, robots are trained using RL algorithms, which are based on the generated data and the 3D object classifications. Finally, the effectiveness of the proposed method is integrated in the fourth stage. This proposed method has the potential to be a significant contribution to the field of robotics and 3D computer vision. By using synthetic data and the point cloud framework, the proposed method offers an efficient and cost-effective solution for training robots in virtual environments. The ability to reduce the time and cost required for training robots in real-world environments is a major advantage of this proposed method, and has the potential to revolutionize the field of robotics and 3D computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Betty完成签到,获得积分10
1秒前
Benjamin完成签到 ,获得积分10
2秒前
顾北发布了新的文献求助10
2秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
阿捷完成签到,获得积分10
6秒前
6秒前
8秒前
田様应助顾北采纳,获得10
9秒前
完美世界应助顾北采纳,获得10
9秒前
狂野水壶发布了新的文献求助10
9秒前
稳重的寻梅给稳重的寻梅的求助进行了留言
10秒前
Lucas应助deway采纳,获得10
11秒前
d22110652完成签到,获得积分10
12秒前
所所应助acutelily采纳,获得10
15秒前
15秒前
15秒前
Hua发布了新的文献求助10
15秒前
自信河马完成签到,获得积分10
16秒前
赵乂完成签到,获得积分10
16秒前
Oxygen完成签到,获得积分10
17秒前
19秒前
19秒前
bio发布了新的文献求助10
19秒前
科研通AI6应助少少采纳,获得10
20秒前
SciGPT应助黑糖珍珠采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4609841
求助须知:如何正确求助?哪些是违规求助? 4016077
关于积分的说明 12434231
捐赠科研通 3697464
什么是DOI,文献DOI怎么找? 2038746
邀请新用户注册赠送积分活动 1071727
科研通“疑难数据库(出版商)”最低求助积分说明 955446