Digital twin for autonomous collaborative robot by using synthetic data and reinforcement learning

机器人 人工智能 计算机科学 机器人学 对象(语法) 点云 领域(数学) 强化学习 机器学习 计算机视觉 人机交互 数学 纯数学
作者
Kyusung Kim,Min-Ho Choi,Jumyung Um
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:85: 102632-102632 被引量:2
标识
DOI:10.1016/j.rcim.2023.102632
摘要

Training robots in real-world environments can be challenging due to time and cost constraints. To overcome these limitations, robots can be trained in virtual environments using Reinforcement Learning (RL). However, this approach faces a significant challenge in obtaining suitable data. This paper proposes a novel method for training collaborative robots in virtual environments using synthetic data and the point cloud framework. The proposed method is divided into four stages: data generation, 3D object classification, robot training, and integration. The first stage of the proposed method is data generation, where synthetic data is generated to resemble real-world scenarios. This data is then used to train robots in virtual environments. The second stage is 3D object classification, where the generated data is used to classify objects in 3D space. In the third stage, robots are trained using RL algorithms, which are based on the generated data and the 3D object classifications. Finally, the effectiveness of the proposed method is integrated in the fourth stage. This proposed method has the potential to be a significant contribution to the field of robotics and 3D computer vision. By using synthetic data and the point cloud framework, the proposed method offers an efficient and cost-effective solution for training robots in virtual environments. The ability to reduce the time and cost required for training robots in real-world environments is a major advantage of this proposed method, and has the potential to revolutionize the field of robotics and 3D computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助Cz采纳,获得10
1秒前
科研通AI2S应助宇文数学采纳,获得10
2秒前
酷波er应助清新的苑博采纳,获得10
4秒前
Cz完成签到,获得积分20
5秒前
传奇3应助圣晟胜采纳,获得10
5秒前
韩帅发布了新的文献求助10
6秒前
薛定谔的猫完成签到,获得积分10
6秒前
7秒前
清秀的SONG完成签到 ,获得积分10
8秒前
霍不言完成签到,获得积分10
8秒前
9秒前
诸笑白发布了新的文献求助10
9秒前
健忘捕发布了新的文献求助10
9秒前
9秒前
整齐代真完成签到 ,获得积分10
9秒前
10秒前
Tingting完成签到 ,获得积分10
11秒前
Fionaaaa完成签到,获得积分10
11秒前
阿吧发布了新的文献求助10
13秒前
13秒前
问之发布了新的文献求助30
14秒前
14秒前
Fionaaaa发布了新的文献求助50
15秒前
Qinpy完成签到,获得积分10
16秒前
科研通AI5应助微风轻起采纳,获得10
16秒前
16秒前
汉堡包应助zoloft采纳,获得10
16秒前
沙河口大长硬完成签到,获得积分10
17秒前
爱笑的冷风完成签到 ,获得积分10
17秒前
宇文数学发布了新的文献求助10
18秒前
阿吧完成签到,获得积分10
18秒前
苏苏发布了新的文献求助10
18秒前
阿笨猫完成签到,获得积分10
20秒前
20秒前
21秒前
会飞的鱼完成签到 ,获得积分10
21秒前
Beyond完成签到,获得积分10
22秒前
24秒前
曾经的路人完成签到,获得积分20
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849