Spatial–temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting

计算机科学 可靠性(半导体) 不确定度量化 数据挖掘 过程(计算) 图形 敏感性分析 机器学习 人工智能 不确定度分析 模拟 功率(物理) 物理 理论计算机科学 量子力学 操作系统
作者
Xiyuan Jin,Jing Wang,Shengnan Guo,Tonglong Wei,Yiji Zhao,Youfang Lin,Huaiyu Wan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122143-122143 被引量:4
标识
DOI:10.1016/j.eswa.2023.122143
摘要

Providing both point estimation and uncertainty quantification for traffic forecasting is crucial for supporting accurate and reliable services in intelligent transportation systems. However, the majority of existing traffic forecasting works mainly focus on point estimation without quantifying the uncertainty of predictions. Meanwhile, existing uncertainty quantification (UQ) methods fail to capture the inherent static characteristics of traffic uncertainty along both the spatial and temporal dimensions. Directly equipping the traffic forecasting works with uncertainty quantification techniques may even damage the prediction accuracy. In this paper, we propose a novel traffic forecasting model aiming at providing point estimation and uncertainty quantification simultaneously, called STUP. Compared to the traditional graph convolution networks (GCNs), our framework is able to incorporate uncertainty quantification into traffic forecasting to further improve forecasting performance. Specifically, we first develop an adaptive strategy to initialize uncertainty distribution. Then a kind of spatial–temporal uncertainty layer is carefully designed to model the evolution process of both the traffic state and its corresponding uncertainty, along with a gated adjusting unit to avoid error information propagation. Finally, we propose a novel constraint loss to further help improve the forecasting accuracy and to alleviate the training difficulty caused by the lack of uncertainty labels. Experiments on five real-world traffic datasets demonstrate that STUP outperforms the state-of-the-art baselines on both the traffic prediction task and uncertainty quantification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周周发布了新的文献求助10
1秒前
诺澜啊发布了新的文献求助10
1秒前
亚亚完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
Alxe发布了新的文献求助10
4秒前
4秒前
6秒前
小鱼发布了新的文献求助10
7秒前
8秒前
阿肖呀完成签到,获得积分10
8秒前
www完成签到,获得积分10
8秒前
qiandi完成签到,获得积分10
9秒前
诺澜啊完成签到,获得积分10
9秒前
9秒前
9秒前
积极烧鹅发布了新的文献求助10
9秒前
10秒前
Am1r完成签到,获得积分10
12秒前
浮游应助NNUsusan采纳,获得10
13秒前
goftmac发布了新的文献求助10
13秒前
归尘发布了新的文献求助10
13秒前
14秒前
善学以致用应助闪闪鬼神采纳,获得10
14秒前
良辰美景发布了新的文献求助10
14秒前
14秒前
独特听芹完成签到,获得积分10
14秒前
专一的石头完成签到,获得积分10
15秒前
鑫渊完成签到,获得积分10
15秒前
15秒前
心悦SCI完成签到,获得积分10
16秒前
许安完成签到,获得积分10
18秒前
acat完成签到 ,获得积分10
19秒前
kid1412发布了新的文献求助30
19秒前
19秒前
王嘉怡发布了新的文献求助10
20秒前
21秒前
慕青应助风中的芷蕾采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991009
求助须知:如何正确求助?哪些是违规求助? 4239693
关于积分的说明 13207849
捐赠科研通 4034437
什么是DOI,文献DOI怎么找? 2207277
邀请新用户注册赠送积分活动 1218320
关于科研通互助平台的介绍 1136669