Spatial–temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting

计算机科学 可靠性(半导体) 不确定度量化 数据挖掘 过程(计算) 图形 敏感性分析 机器学习 人工智能 不确定度分析 模拟 功率(物理) 物理 理论计算机科学 量子力学 操作系统
作者
Xiyuan Jin,Jing Wang,Shengnan Guo,Tonglong Wei,Yiji Zhao,Youfang Lin,Huaiyu Wan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122143-122143 被引量:4
标识
DOI:10.1016/j.eswa.2023.122143
摘要

Providing both point estimation and uncertainty quantification for traffic forecasting is crucial for supporting accurate and reliable services in intelligent transportation systems. However, the majority of existing traffic forecasting works mainly focus on point estimation without quantifying the uncertainty of predictions. Meanwhile, existing uncertainty quantification (UQ) methods fail to capture the inherent static characteristics of traffic uncertainty along both the spatial and temporal dimensions. Directly equipping the traffic forecasting works with uncertainty quantification techniques may even damage the prediction accuracy. In this paper, we propose a novel traffic forecasting model aiming at providing point estimation and uncertainty quantification simultaneously, called STUP. Compared to the traditional graph convolution networks (GCNs), our framework is able to incorporate uncertainty quantification into traffic forecasting to further improve forecasting performance. Specifically, we first develop an adaptive strategy to initialize uncertainty distribution. Then a kind of spatial–temporal uncertainty layer is carefully designed to model the evolution process of both the traffic state and its corresponding uncertainty, along with a gated adjusting unit to avoid error information propagation. Finally, we propose a novel constraint loss to further help improve the forecasting accuracy and to alleviate the training difficulty caused by the lack of uncertainty labels. Experiments on five real-world traffic datasets demonstrate that STUP outperforms the state-of-the-art baselines on both the traffic prediction task and uncertainty quantification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助MHR采纳,获得10
1秒前
3秒前
玩命的白亦关注了科研通微信公众号
3秒前
tim发布了新的文献求助10
3秒前
4秒前
5秒前
lucky完成签到 ,获得积分10
5秒前
李健应助小海棉采纳,获得10
6秒前
瘦瘦雅香完成签到,获得积分10
6秒前
6秒前
敏感远锋完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
melody发布了新的文献求助10
9秒前
善学以致用应助香蕉梨愁采纳,获得10
9秒前
ll发布了新的文献求助20
10秒前
xxx发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
酷波er应助千凡采纳,获得10
12秒前
12秒前
superxiao应助标致断天采纳,获得10
12秒前
钱多多完成签到 ,获得积分10
13秒前
Or1ll完成签到,获得积分10
13秒前
13秒前
善善完成签到 ,获得积分10
14秒前
silk发布了新的文献求助10
14秒前
pyh发布了新的文献求助10
15秒前
15秒前
16秒前
ding应助科研通管家采纳,获得10
16秒前
香蕉诗蕊应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
香蕉诗蕊应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
香蕉诗蕊应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
luo应助科研通管家采纳,获得10
16秒前
阿盛完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299