Spatial-temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting

计算机科学 可靠性(半导体) 不确定度量化 数据挖掘 过程(计算) 图形 机器学习 人工智能 功率(物理) 物理 理论计算机科学 量子力学 操作系统
作者
Xiyuan Jin,Jing Wang,Shengnan Guo,Tonglong Wei,Yiji Zhao,Yuxia Lin,Huaiyu Wan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122143-122143
标识
DOI:10.1016/j.eswa.2023.122143
摘要

Providing both point estimation and uncertainty quantification for traffic forecasting is crucial for supporting accurate and reliable services in intelligent transportation systems. However, the majority of existing traffic forecasting works mainly focus on point estimation without quantifying the uncertainty of predictions. Meanwhile, existing uncertainty quantification (UQ) methods fail to capture the inherent static characteristics of traffic uncertainty along both the spatial and temporal dimensions. Directly equipping the traffic forecasting works with uncertainty quantification techniques may even damage the prediction accuracy. In this paper, we propose a novel traffic forecasting model aiming at providing point estimation and uncertainty quantification simultaneously, called STUP. Compared to the traditional graph convolution networks (GCNs), our framework is able to incorporate uncertainty quantification into traffic forecasting to further improve forecasting performance. Specifically, we first develop an adaptive strategy to initialize uncertainty distribution. Then a kind of spatial–temporal uncertainty layer is carefully designed to model the evolution process of both the traffic state and its corresponding uncertainty, along with a gated adjusting unit to avoid error information propagation. Finally, we propose a novel constraint loss to further help improve the forecasting accuracy and to alleviate the training difficulty caused by the lack of uncertainty labels. Experiments on five real-world traffic datasets demonstrate that STUP outperforms the state-of-the-art baselines on both the traffic prediction task and uncertainty quantification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气的山彤完成签到,获得积分10
1秒前
贝贝完成签到,获得积分10
1秒前
神奇的柜子完成签到,获得积分10
1秒前
刺槐完成签到,获得积分10
2秒前
研友_850aeZ完成签到,获得积分10
2秒前
Jenny应助zh213采纳,获得50
2秒前
wuuuuuuu发布了新的文献求助10
3秒前
3秒前
冬虫夏草完成签到,获得积分10
3秒前
Herryoooooo发布了新的文献求助10
3秒前
脑洞疼应助Russell采纳,获得10
3秒前
都是发布了新的文献求助10
4秒前
倩倩0857完成签到,获得积分10
5秒前
开朗的觅柔完成签到,获得积分10
5秒前
我是老大应助Carpe采纳,获得10
5秒前
chy完成签到,获得积分10
5秒前
Gift完成签到,获得积分10
5秒前
张张张完成签到,获得积分20
5秒前
爆米花应助开始游戏55采纳,获得10
6秒前
6秒前
橙子是不是完成签到,获得积分10
7秒前
健壮的尔烟完成签到,获得积分10
7秒前
qiqi完成签到,获得积分10
7秒前
8秒前
8秒前
西柚应助玩命的若采纳,获得10
8秒前
8秒前
YangyangLiu完成签到,获得积分10
9秒前
研友_想想完成签到,获得积分10
9秒前
10秒前
weiqi发布了新的文献求助10
10秒前
cjw完成签到,获得积分10
10秒前
11秒前
王一博完成签到,获得积分10
11秒前
怕孤独的乌龟完成签到 ,获得积分10
12秒前
太叔丹翠完成签到,获得积分10
12秒前
打打应助大鱼采纳,获得10
12秒前
qicaoji发布了新的文献求助10
12秒前
cjw发布了新的文献求助10
12秒前
彭于晏应助科研通管家采纳,获得20
13秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180114
求助须知:如何正确求助?哪些是违规求助? 2830498
关于积分的说明 7977736
捐赠科研通 2492069
什么是DOI,文献DOI怎么找? 1329190
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954