Spatial–temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting

计算机科学 可靠性(半导体) 不确定度量化 数据挖掘 过程(计算) 图形 敏感性分析 机器学习 人工智能 不确定度分析 模拟 功率(物理) 物理 理论计算机科学 量子力学 操作系统
作者
Xiyuan Jin,Jing Wang,Shengnan Guo,Tonglong Wei,Yiji Zhao,Youfang Lin,Huaiyu Wan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122143-122143 被引量:4
标识
DOI:10.1016/j.eswa.2023.122143
摘要

Providing both point estimation and uncertainty quantification for traffic forecasting is crucial for supporting accurate and reliable services in intelligent transportation systems. However, the majority of existing traffic forecasting works mainly focus on point estimation without quantifying the uncertainty of predictions. Meanwhile, existing uncertainty quantification (UQ) methods fail to capture the inherent static characteristics of traffic uncertainty along both the spatial and temporal dimensions. Directly equipping the traffic forecasting works with uncertainty quantification techniques may even damage the prediction accuracy. In this paper, we propose a novel traffic forecasting model aiming at providing point estimation and uncertainty quantification simultaneously, called STUP. Compared to the traditional graph convolution networks (GCNs), our framework is able to incorporate uncertainty quantification into traffic forecasting to further improve forecasting performance. Specifically, we first develop an adaptive strategy to initialize uncertainty distribution. Then a kind of spatial–temporal uncertainty layer is carefully designed to model the evolution process of both the traffic state and its corresponding uncertainty, along with a gated adjusting unit to avoid error information propagation. Finally, we propose a novel constraint loss to further help improve the forecasting accuracy and to alleviate the training difficulty caused by the lack of uncertainty labels. Experiments on five real-world traffic datasets demonstrate that STUP outperforms the state-of-the-art baselines on both the traffic prediction task and uncertainty quantification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
univ完成签到,获得积分10
1秒前
BillowHu发布了新的文献求助10
1秒前
2秒前
2秒前
情怀应助高大的高山采纳,获得10
3秒前
4秒前
飞快的从彤完成签到 ,获得积分20
4秒前
5秒前
0713发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
Alice0210发布了新的文献求助10
8秒前
英姑应助胡涵暄采纳,获得10
8秒前
善学以致用应助无非采纳,获得10
9秒前
孤独的太清完成签到 ,获得积分10
9秒前
涵泽发布了新的文献求助10
10秒前
10秒前
Suyx发布了新的文献求助10
10秒前
11秒前
ding应助Antares采纳,获得10
11秒前
田様应助烂漫凝竹采纳,获得10
11秒前
科研通AI6应助cjch2025采纳,获得10
11秒前
未道发布了新的文献求助10
12秒前
星辰大海应助xiaobai采纳,获得10
12秒前
天将明完成签到,获得积分10
12秒前
13秒前
14秒前
科研通AI6应助djbj2022采纳,获得10
14秒前
xiaohuang发布了新的文献求助10
14秒前
vividkingking发布了新的文献求助10
14秒前
NexusExplorer应助吴念采纳,获得10
16秒前
16秒前
KKKZ完成签到,获得积分10
17秒前
大胆傲芙完成签到,获得积分10
18秒前
今后应助高宇晖采纳,获得10
18秒前
凉秋气爽完成签到,获得积分10
19秒前
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965