Spatial-temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting

计算机科学 可靠性(半导体) 不确定度量化 数据挖掘 过程(计算) 图形 机器学习 人工智能 量子力学 理论计算机科学 操作系统 物理 功率(物理)
作者
Xiyuan Jin,Jing Wang,Shengnan Guo,Tonglong Wei,Yiji Zhao,Yuxia Lin,Huaiyu Wan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122143-122143
标识
DOI:10.1016/j.eswa.2023.122143
摘要

Providing both point estimation and uncertainty quantification for traffic forecasting is crucial for supporting accurate and reliable services in intelligent transportation systems. However, the majority of existing traffic forecasting works mainly focus on point estimation without quantifying the uncertainty of predictions. Meanwhile, existing uncertainty quantification (UQ) methods fail to capture the inherent static characteristics of traffic uncertainty along both the spatial and temporal dimensions. Directly equipping the traffic forecasting works with uncertainty quantification techniques may even damage the prediction accuracy. In this paper, we propose a novel traffic forecasting model aiming at providing point estimation and uncertainty quantification simultaneously, called STUP. Compared to the traditional graph convolution networks (GCNs), our framework is able to incorporate uncertainty quantification into traffic forecasting to further improve forecasting performance. Specifically, we first develop an adaptive strategy to initialize uncertainty distribution. Then a kind of spatial–temporal uncertainty layer is carefully designed to model the evolution process of both the traffic state and its corresponding uncertainty, along with a gated adjusting unit to avoid error information propagation. Finally, we propose a novel constraint loss to further help improve the forecasting accuracy and to alleviate the training difficulty caused by the lack of uncertainty labels. Experiments on five real-world traffic datasets demonstrate that STUP outperforms the state-of-the-art baselines on both the traffic prediction task and uncertainty quantification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子川发布了新的文献求助10
刚刚
大头娃娃没下巴完成签到,获得积分10
2秒前
liyuchen完成签到,获得积分10
2秒前
CipherSage应助Lxxx_7采纳,获得10
3秒前
烟花应助永远少年采纳,获得10
3秒前
meng发布了新的文献求助10
5秒前
科研通AI5应助贪吃的猴子采纳,获得10
7秒前
7秒前
可爱的彩虹完成签到,获得积分10
7秒前
小确幸完成签到,获得积分10
7秒前
彭于晏应助毛毛虫采纳,获得10
8秒前
LilyChen完成签到 ,获得积分10
8秒前
Owen应助Su采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
yyyy关注了科研通微信公众号
10秒前
Jane完成签到 ,获得积分10
11秒前
11秒前
11秒前
kento发布了新的文献求助30
11秒前
Akim应助balzacsun采纳,获得10
12秒前
狼来了aas发布了新的文献求助10
12秒前
13秒前
didi完成签到,获得积分10
13秒前
嘻嘻发布了新的文献求助10
15秒前
冲冲冲完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
善良身影完成签到,获得积分10
18秒前
天天快乐应助郭豪琪采纳,获得10
19秒前
13679165979发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824