Spatial-temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting

计算机科学 可靠性(半导体) 不确定度量化 数据挖掘 过程(计算) 图形 机器学习 人工智能 量子力学 理论计算机科学 操作系统 物理 功率(物理)
作者
Xiyuan Jin,Jing Wang,Shengnan Guo,Tonglong Wei,Yiji Zhao,Yuxia Lin,Huaiyu Wan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122143-122143
标识
DOI:10.1016/j.eswa.2023.122143
摘要

Providing both point estimation and uncertainty quantification for traffic forecasting is crucial for supporting accurate and reliable services in intelligent transportation systems. However, the majority of existing traffic forecasting works mainly focus on point estimation without quantifying the uncertainty of predictions. Meanwhile, existing uncertainty quantification (UQ) methods fail to capture the inherent static characteristics of traffic uncertainty along both the spatial and temporal dimensions. Directly equipping the traffic forecasting works with uncertainty quantification techniques may even damage the prediction accuracy. In this paper, we propose a novel traffic forecasting model aiming at providing point estimation and uncertainty quantification simultaneously, called STUP. Compared to the traditional graph convolution networks (GCNs), our framework is able to incorporate uncertainty quantification into traffic forecasting to further improve forecasting performance. Specifically, we first develop an adaptive strategy to initialize uncertainty distribution. Then a kind of spatial–temporal uncertainty layer is carefully designed to model the evolution process of both the traffic state and its corresponding uncertainty, along with a gated adjusting unit to avoid error information propagation. Finally, we propose a novel constraint loss to further help improve the forecasting accuracy and to alleviate the training difficulty caused by the lack of uncertainty labels. Experiments on five real-world traffic datasets demonstrate that STUP outperforms the state-of-the-art baselines on both the traffic prediction task and uncertainty quantification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Accept完成签到,获得积分0
2秒前
3秒前
油个大饼呜呜呜完成签到,获得积分10
4秒前
王哥完成签到,获得积分10
5秒前
诚心代芙完成签到 ,获得积分10
5秒前
5秒前
cowboy007发布了新的文献求助10
6秒前
乐乐应助eternity136采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
明眸完成签到 ,获得积分10
8秒前
9秒前
王手发布了新的文献求助10
10秒前
10秒前
10秒前
烟花应助zzq778采纳,获得10
12秒前
12秒前
欣欣发布了新的文献求助10
12秒前
小欣6116发布了新的文献求助10
13秒前
Jiuhui发布了新的文献求助10
13秒前
御风甜咖啡完成签到,获得积分10
13秒前
uupp完成签到,获得积分10
14秒前
机智雁凡完成签到,获得积分10
15秒前
Cheung2121发布了新的文献求助30
16秒前
17秒前
19秒前
谜记完成签到,获得积分10
19秒前
共享精神应助Cheung2121采纳,获得30
19秒前
光撒盐完成签到,获得积分10
20秒前
cowboy007完成签到,获得积分10
20秒前
张振宇完成签到 ,获得积分10
21秒前
zz发布了新的文献求助10
22秒前
zzq778发布了新的文献求助10
24秒前
黄怡婷完成签到 ,获得积分10
24秒前
Daisy应助科研通管家采纳,获得10
25秒前
机智苗应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029