Spatial–temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting

计算机科学 可靠性(半导体) 不确定度量化 数据挖掘 过程(计算) 图形 敏感性分析 机器学习 人工智能 不确定度分析 模拟 功率(物理) 物理 理论计算机科学 量子力学 操作系统
作者
Xiyuan Jin,Jing Wang,Shengnan Guo,Tonglong Wei,Yiji Zhao,Youfang Lin,Huaiyu Wan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122143-122143 被引量:4
标识
DOI:10.1016/j.eswa.2023.122143
摘要

Providing both point estimation and uncertainty quantification for traffic forecasting is crucial for supporting accurate and reliable services in intelligent transportation systems. However, the majority of existing traffic forecasting works mainly focus on point estimation without quantifying the uncertainty of predictions. Meanwhile, existing uncertainty quantification (UQ) methods fail to capture the inherent static characteristics of traffic uncertainty along both the spatial and temporal dimensions. Directly equipping the traffic forecasting works with uncertainty quantification techniques may even damage the prediction accuracy. In this paper, we propose a novel traffic forecasting model aiming at providing point estimation and uncertainty quantification simultaneously, called STUP. Compared to the traditional graph convolution networks (GCNs), our framework is able to incorporate uncertainty quantification into traffic forecasting to further improve forecasting performance. Specifically, we first develop an adaptive strategy to initialize uncertainty distribution. Then a kind of spatial–temporal uncertainty layer is carefully designed to model the evolution process of both the traffic state and its corresponding uncertainty, along with a gated adjusting unit to avoid error information propagation. Finally, we propose a novel constraint loss to further help improve the forecasting accuracy and to alleviate the training difficulty caused by the lack of uncertainty labels. Experiments on five real-world traffic datasets demonstrate that STUP outperforms the state-of-the-art baselines on both the traffic prediction task and uncertainty quantification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助哈哈哈哈哈哈采纳,获得10
刚刚
刚刚
Ganann发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
yilin完成签到,获得积分10
1秒前
lilei发布了新的文献求助20
1秒前
木中一完成签到,获得积分10
2秒前
3秒前
bjx完成签到,获得积分10
3秒前
mmw完成签到,获得积分10
4秒前
fsgdf发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
健壮绍辉完成签到,获得积分10
5秒前
5秒前
蓝天发布了新的文献求助10
5秒前
盛夏如花发布了新的文献求助10
5秒前
5秒前
刘教授发布了新的文献求助10
5秒前
6秒前
bjx发布了新的文献求助10
6秒前
6秒前
全宝林完成签到,获得积分10
7秒前
执着安莲完成签到,获得积分10
7秒前
感动的仙人掌完成签到,获得积分10
7秒前
拾诣发布了新的文献求助10
7秒前
keyanrubbish发布了新的文献求助10
7秒前
Juyy完成签到,获得积分10
7秒前
8秒前
徐银燕完成签到,获得积分10
9秒前
9秒前
YY发布了新的文献求助10
9秒前
9秒前
洋云子发布了新的文献求助10
9秒前
AI_S发布了新的文献求助10
9秒前
ningmeng完成签到,获得积分10
10秒前
10秒前
xin发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836