Partial reinforcement optimizer: An evolutionary optimization algorithm

强化学习 计算机科学 人工智能 稳健性(进化) 进化算法 启发式 优化算法 学习分类器系统 数学优化 机器学习 算法 数学 生物化学 化学 基因
作者
Ahmad Taheri,Keyvan RahimiZadeh,Amin Beheshti,Jan Baumbach,R. Venkata Rao,Seyedali Mirjalili,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122070-122070 被引量:27
标识
DOI:10.1016/j.eswa.2023.122070
摘要

In this paper, a novel evolutionary optimization algorithm, named Partial Reinforcement Optimizer (PRO), is introduced. The major idea behind the PRO comes from a psychological theory in evolutionary learning and training called the partial reinforcement effect (PRE) theory. According to the PRE theory, a learner is intermittently reinforced to learn or strengthen a specific behavior during the learning and training process. The reinforcement patterns significantly impact the response rate and strength of the learner during a reinforcement schedule, achieved by appropriately selecting a reinforcement behavior and the time of applying reinforcement process. In the PRO algorithm, the PRE theory is mathematically modeled to an evolutionary optimization algorithm for solving global optimization problems. The efficiency of the proposed PRO algorithm is compared to well-known Meta-heuristic Algorithms (MAs) using Wilcoxon and Friedman statistical tests to analyze results from 75 benchmarks of the CEC2005, CEC2014, and CEC-BC-2017 test suits, which include unimodal, multimodal, hybrid, and composition functions. Additionally, the proposed PRO algorithm is applied to optimize a Federated Deep Learning Electrocardiography (ECG) classifier, as a real case study, to investigate the robustness and applicability of the proposed PRO. The experimental results demonstrate that the PRO algorithm outperforms existing meta-heuristic optimization algorithms by providing a more accurate and robust solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助ylc采纳,获得10
1秒前
2秒前
yanna应助lunar采纳,获得10
2秒前
Lucas应助nan采纳,获得10
2秒前
yyy完成签到,获得积分10
3秒前
4秒前
ZXL发布了新的文献求助10
6秒前
听蝉完成签到,获得积分10
6秒前
Wee完成签到 ,获得积分10
7秒前
轻松沛凝发布了新的文献求助10
7秒前
LIVE发布了新的文献求助200
7秒前
8秒前
93发布了新的文献求助30
9秒前
可爱的函函应助soong采纳,获得10
9秒前
酷炫翠桃应助奋斗的妙海采纳,获得10
9秒前
西红柿炒番茄应助一丁雨采纳,获得10
10秒前
严永桂发布了新的文献求助10
10秒前
11秒前
Yi发布了新的文献求助30
12秒前
12秒前
所所应助吱吱采纳,获得30
15秒前
无花果应助ZXL采纳,获得10
15秒前
初见发布了新的文献求助10
16秒前
16秒前
17秒前
希望天下0贩的0应助Randy采纳,获得10
18秒前
领导范儿应助妥妥酱采纳,获得10
18秒前
jessica发布了新的文献求助50
18秒前
钮枫完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
21秒前
hyw完成签到,获得积分10
21秒前
warren完成签到,获得积分10
23秒前
HXU发布了新的文献求助10
23秒前
包容新蕾发布了新的文献求助10
23秒前
淡定小懒猪完成签到,获得积分10
24秒前
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053