Predicting acupuncture efficacy for major depressive disorder using baseline clinical variables: A machine learning study

重性抑郁障碍 针灸科 哈姆德 逻辑回归 机器学习 体质指数 医学 萧条(经济学) 物理疗法 接收机工作特性 人工智能 焦虑 内科学 精神科 心情 计算机科学 替代医学 病理 经济 宏观经济学
作者
Jiani Fu,Xiaowen Cai,Shengtao Huang,Xiaoke Qiu,Zheng Li,Houyuan Hong,Shanshan Qu,Yong Huang
出处
期刊:Journal of Psychiatric Research [Elsevier]
卷期号:168: 64-70
标识
DOI:10.1016/j.jpsychires.2023.10.040
摘要

Acupuncture is a viable treatment option for major depressive disorder (MDD). However, its effectiveness varies among patients. This study aimed to develop a model to predict the efficacy of acupuncture therapy for MDD using machine learning and baseline clinical variables. A total of 124 patients with MDD from five research centers were included in our machine learning study. All patients underwent acupuncture treatment for 6 weeks and the efficacy of the treatment was evaluated using the Hamilton Depression Scale-17 (HAMD-17). The max-relevance and min-redundancy (mRMR) algorithm and Pearson correlation analysis were used for selecting 11 significant features from 26 baseline clinical variables for model training. We compared the performance of five machine learning models, including logistic regression, support vector machine, K-nearest neighbor, random forest, and XgBoost, in predicting the effect of acupuncture in relieving major depression. Among the five models, XgBoost performed the best with an area under the receiver operating characteristic curve (AUC) of 0.835, an accuracy of 0.730, a sensitivity of 0.670, a specificity of 0.774, and an F1 score of 0.751. The key predictive variables identified were anxiety score in the self-rating depression scale (SDS), the traditional Chinese medicine syndrome of deficiency in both heart and spleen, and body mass index (BMI). The study demonstrates that the developed model can help physicians predict the patients who will benefit from acupuncture treatment, which is of positive significance for improving the clinical efficacy of acupuncture on MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青青完成签到 ,获得积分10
2秒前
Chan0501发布了新的文献求助10
2秒前
昭昭完成签到,获得积分10
3秒前
SCI发布了新的文献求助10
3秒前
卓然完成签到,获得积分10
3秒前
李来仪发布了新的文献求助10
4秒前
5秒前
菲菲呀完成签到,获得积分10
5秒前
Rrr发布了新的文献求助10
5秒前
7秒前
陌路完成签到,获得积分10
7秒前
善学以致用应助leon采纳,获得30
7秒前
8秒前
斯文败类应助嘻嘻采纳,获得10
8秒前
科研通AI5应助小只bb采纳,获得30
8秒前
yyyy发布了新的文献求助10
8秒前
2023AKY完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
彭于晏应助惠惠采纳,获得10
11秒前
风魂剑主完成签到,获得积分10
12秒前
yryzst9899发布了新的文献求助10
12秒前
13秒前
飘逸小笼包完成签到,获得积分10
13秒前
科研小郑完成签到,获得积分10
13秒前
CipherSage应助熊boy采纳,获得10
13秒前
XXGG完成签到 ,获得积分10
14秒前
大个应助舒心赛凤采纳,获得10
14秒前
晨曦发布了新的文献求助10
15秒前
15秒前
ff0110完成签到,获得积分10
16秒前
星辰大海应助苹果萧采纳,获得10
16秒前
徐徐完成签到,获得积分10
16秒前
哈哈哈哈发布了新的文献求助10
17秒前
请叫我风吹麦浪应助yoon采纳,获得10
17秒前
认真的青柠完成签到,获得积分10
17秒前
bbanshan完成签到,获得积分10
17秒前
卫生纸发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794