Sea surface reconstruction from marine radar images using deep convolutional neural networks

卷积神经网络 雷达 相关系数 人工智能 计算机科学 快速傅里叶变换 均方误差 曲面重建 调制(音乐) 深度学习 光传递函数 遥感 曲面(拓扑) 数据集 迭代重建 模式识别(心理学) 算法 地质学 数学 电信 声学 统计 物理 几何学 数学分析 机器学习
作者
Ming Zhao,Yaokun Zheng,Zhiliang Lin
出处
期刊:Journal of Ocean Engineering and Science [Elsevier BV]
卷期号:8 (6): 647-661
标识
DOI:10.1016/j.joes.2023.09.002
摘要

The sea surface reconstructed from radar images provides valuable information for marine operations and maritime transport. The standard reconstruction method relies on the three-dimensional fast Fourier transform (3D-FFT), which introduces empirical parameters and modulation transfer function (MTF) to correct the modulation effects that may cause errors. In light of the convolutional neural networks’ (CNN) success in computer vision tasks, this paper proposes a novel sea surface reconstruction method from marine radar images based on an end-to-end CNN model with the U-Net architecture. Synthetic radar images and sea surface elevation maps were used for training and testing. Compared to the standard reconstruction method, the CNN-based model achieved higher accuracy on the same data set, with an improved correlation coefficient between reconstructed and actual wave fields of up to 0.96-0.97, and a decreased non-dimensional root mean square error (NDRMSE) of around 0.06. The influence of training data on the deep learning model was also studied. Additionally, the impact of the significant wave height and peak period on the CNN model’s accuracy was investigated. It has been demonstrated that the accuracy will fluctuate as the wave steepness increases, but the correlation coefficient remains above 0.90, and the NDRMSE remains less than 0.11.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易安发布了新的文献求助30
刚刚
hmx发布了新的文献求助10
刚刚
SYLH应助Clown采纳,获得10
刚刚
1秒前
星辰大海应助yyy采纳,获得10
2秒前
SYLH应助王不王采纳,获得10
2秒前
star009完成签到,获得积分10
2秒前
2秒前
雅丽发布了新的文献求助10
3秒前
3秒前
Owen应助调皮铸海采纳,获得10
3秒前
4秒前
特梅头完成签到,获得积分20
4秒前
4秒前
victorchen完成签到,获得积分10
5秒前
开心超人发布了新的文献求助10
5秒前
搜集达人应助666采纳,获得10
6秒前
6秒前
周雅彬完成签到,获得积分20
6秒前
脑洞疼应助Yy采纳,获得10
6秒前
研友_VZG7GZ应助典雅的俊驰采纳,获得10
7秒前
熊熊完成签到,获得积分10
7秒前
7秒前
迅速的皮皮虾完成签到,获得积分10
7秒前
Ruoyu完成签到,获得积分10
8秒前
DQ完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
星星完成签到,获得积分10
12秒前
Dskelf完成签到,获得积分10
12秒前
无花果应助故意的访云采纳,获得10
12秒前
12秒前
13秒前
Akim应助jase采纳,获得10
13秒前
13秒前
Jouleken完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650