Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid

聚乳酸 光催化 焚化 材料科学 分解 废物管理 热解 水解 光降解 降级(电信) 碳纤维 化学工程 聚合物 催化作用 有机化学 化学 复合数 复合材料 工程类 电信
作者
A. P. Garratt,K.L. Nguyen,A Lindsay Brooke,Martin J. Taylor,M. Grazia Francesconi
出处
期刊:ACS Environmental Au [American Chemical Society]
卷期号:3 (6): 342-347
标识
DOI:10.1021/acsenvironau.3c00040
摘要

Plastic waste is a critical global issue, yet current strategies to avoid committing plastic waste to landfills include incineration, gasification, or pyrolysis high carbon emitting and energy consuming approaches. However, plastic waste can become a resource instead of a problem if high value products, such as fine chemicals and liquid fuel molecules, can be liberated from controlled its decomposition. This letter presents proof of concept on a low-cost, low energy approach to controlled decomposition of plastic, photocatalytic hydrolysis. This approach integrates photolysis and hydrolysis, both slow natural decomposition processes, with a photocatalytic process. The photocatalyst, α-Fe2O3, is embedded into a polylactic acid (PLA) plastic matrix. The photocatalyst/plastic composite is then immersed in water and subjected to low-energy (25 W) UV light for 90 h. The monomer lactide is produced as the major product. α-Fe2O3 (6.9 wt %) was found to accelerate the PLA degradation pathway, achieving 32% solid transformation into liquid phase products, in comparison to PLA on its own, which was found to not decompose, using the same conditions. This highlights a low energy route toward plastic waste upgrade and valorization that is less carbon intensive than pyrolysis and faster than natural degradation. By directly comparing a 25 W (0.025 kWh) UV bulb with a 13 kWh furnace, the photocatalytic reaction would directly consume 520× less energy than a conventional thermochemical pathway. Furthermore, this technology can be extended and applied to other plastics, and other photocatalysts can be used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷凤灵发布了新的文献求助10
刚刚
1秒前
风雨1210完成签到,获得积分10
1秒前
抗压兔完成签到 ,获得积分10
1秒前
chillin发布了新的文献求助10
1秒前
阳尧发布了新的文献求助10
2秒前
天天快乐应助troubadourelf采纳,获得10
2秒前
勤恳慕蕊发布了新的文献求助10
3秒前
3秒前
kxy完成签到,获得积分10
6秒前
6秒前
婧婧完成签到 ,获得积分10
6秒前
7秒前
8秒前
左友铭完成签到 ,获得积分10
8秒前
sweetbearm应助通~采纳,获得10
8秒前
AKLIZE完成签到,获得积分10
8秒前
刘大妮完成签到,获得积分10
9秒前
clean完成签到,获得积分20
10秒前
Lucas发布了新的文献求助10
10秒前
10秒前
朴实以松发布了新的文献求助10
10秒前
感谢橘子转发科研通微信,获得积分50
10秒前
围炉煮茶完成签到,获得积分10
11秒前
11秒前
云锋发布了新的文献求助10
12秒前
兴奋的问旋应助务实盼海采纳,获得10
12秒前
李秋静发布了新的文献求助10
12秒前
12秒前
无花果应助cookie采纳,获得10
13秒前
13秒前
斯文败类应助阳尧采纳,获得10
13秒前
14秒前
14秒前
abjz完成签到,获得积分10
14秒前
三千弱水为君饮完成签到,获得积分10
15秒前
15秒前
cata完成签到,获得积分10
15秒前
感谢79转发科研通微信,获得积分50
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794