Images Speak in Images: A Generalist Painter for In-Context Visual Learning

计算机科学 背景(考古学) 任务(项目管理) 人工智能 推论 计算机视觉 学习迁移 图像(数学) 机器学习 古生物学 经济 管理 生物
作者
Xinlong Wang,Wen Wang,Yong Cao,Chunhua Shen,Tiejun Huang
标识
DOI:10.1109/cvpr52729.2023.00660
摘要

In-context learning, as a new paradigm in NLP, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. But in computer vision, the difficulties for in-context learning lie in that tasks vary significantly in the output representations, thus it is unclear how to define the general-purpose task prompts that the vision model can understand and transfer to out-of-domain tasks. In this work, we present Painter, a generalist model which addresses these obstacles with an “image”-centric solution, that is, to redefine the output of core vision tasks as images, and specify task prompts as also images. With this idea, our training process is extremely simple, which performs standard masked image modeling on the stitch of input and output image pairs. This makes the model capable of performing tasks conditioned on visible image patches. Thus, during inference, we can adopt a pair of input and output images from the same task as the input condition, to indicate which task to perform. Without bells and whistles, our generalist Painter can achieve competitive performance compared to well-established task-specific models, on seven representative vision tasks ranging from high-level visual understanding to low-level image processing. In addition, Painter significantly outperforms recent generalist models on several challenging tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
随风完成签到,获得积分10
2秒前
NPC应助nhhdhhn采纳,获得10
2秒前
顺其自然完成签到 ,获得积分10
2秒前
柴胡完成签到,获得积分10
3秒前
4秒前
xmh发布了新的文献求助10
4秒前
亦屿森发布了新的文献求助30
5秒前
雨小科完成签到 ,获得积分10
6秒前
7秒前
栗子发布了新的文献求助20
8秒前
8秒前
acetdw完成签到,获得积分10
9秒前
学术混子发布了新的文献求助10
9秒前
悦之无因完成签到,获得积分10
9秒前
安静幻枫应助Joshua采纳,获得20
9秒前
10秒前
11秒前
xingxing完成签到,获得积分10
11秒前
11秒前
桐桐桐桐桐桐完成签到,获得积分10
11秒前
12秒前
啊的瓦房瓦房完成签到,获得积分20
13秒前
大模型应助liyu采纳,获得10
13秒前
14秒前
上官若男应助自觉馒头采纳,获得10
15秒前
XJ完成签到,获得积分10
15秒前
1117发布了新的文献求助10
15秒前
15秒前
礼岁岁完成签到 ,获得积分10
15秒前
Gong完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
acetdw发布了新的文献求助10
16秒前
impossible发布了新的文献求助10
18秒前
笑点低的云朵应助515采纳,获得20
18秒前
木槿完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305528
求助须知:如何正确求助?哪些是违规求助? 2939246
关于积分的说明 8492531
捐赠科研通 2613686
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663114
邀请新用户注册赠送积分活动 647864