Asymmetric low-rank double-level cooperation for scalable discrete cross-modal hashing

计算机科学 散列函数 特征哈希 动态完美哈希 核化 理论计算机科学 嵌入 可扩展性 通用哈希 成对比较 人工智能 哈希表 双重哈希 计算机安全 数据库 图形
作者
Ruihan Chen,Junpeng Tan,Yinghong Zhou,Zhijing Yang,Feiping Nie,Tianshui Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121703-121703 被引量:3
标识
DOI:10.1016/j.eswa.2023.121703
摘要

As an efficient information retrieval technique, cross-modal hashing has received increasing attention. However, the remaining challenges include (1) designing effective kernelization techniques to sufficiently strengthen the connections among different samples in kernel space and improve the class separability of data; (2) learning robust compact common representations to fully extract the correlation information between different modalities; and (3) fully leveraging underlying semantic information and embedding it into optimal hash codes. To conquer these challenges, we propose a novel algorithm called Asymmetric Low-rank Double-level Cooperation Hashing (ALDCH). First, we propose a novel Nonlinear Normalized Space Kernelization submodule (NNSK) to obtain the high-quality kernelized features, which can not only capture the more powerful nonlinear structure representations but also better express the nonlinear intra-modal correlations among the original features. To learn high-quality compact representations, we further propose a novel Low-rank Double-level Cooperation Mapping submodule (LDCM) with the L21-norm constraint, which can enhance the correlation of the coefficient spaces from different modalities and enable the samples to learn constrained and compact hash representations. Besides, our proposed method fully utilizes the underlying semantic label information by introducing the Semantic Pairwise Correlation Learning submodule (SPCL). Extensive experiments conducted on benchmark datasets demonstrate the accuracy and efficiency of ALDCH, which outperforms many state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大辉完成签到 ,获得积分10
2秒前
所所应助英勇靖雁采纳,获得10
2秒前
3秒前
小鱼儿发布了新的文献求助10
3秒前
Felix0917完成签到,获得积分10
4秒前
4秒前
JiayanLi完成签到,获得积分20
4秒前
chenchao完成签到,获得积分10
5秒前
7秒前
所所应助汎影采纳,获得10
8秒前
UHPC发布了新的文献求助10
9秒前
9秒前
华仔应助寻光人采纳,获得10
10秒前
赘婿应助罗彩明采纳,获得10
10秒前
10秒前
10秒前
xiaofengyyy发布了新的文献求助10
11秒前
我是老大应助sunyuhao采纳,获得30
12秒前
13秒前
顾矜应助sunwei采纳,获得10
14秒前
SciGPT应助现实的安波采纳,获得10
15秒前
李123发布了新的文献求助10
15秒前
李健的小迷弟应助汎影采纳,获得10
16秒前
17秒前
orixero应助Applause采纳,获得10
17秒前
18秒前
小蘑菇应助太阳采纳,获得10
18秒前
18秒前
哑巴完成签到,获得积分10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
19秒前
三无发布了新的文献求助10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得30
19秒前
Leanne应助科研通管家采纳,获得30
19秒前
无花果应助科研通管家采纳,获得10
19秒前
mmmmb应助科研通管家采纳,获得30
19秒前
19秒前
李燕君应助科研通管家采纳,获得30
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340