Long-tail Augmented Graph Contrastive Learning for Recommendation

计算机科学 图形 杠杆(统计) 人工智能 特征学习 推荐系统 理论计算机科学 机器学习
作者
Qian Zhao,Zhengwei Wu,Zhiqiang Zhang,Jun Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.11177
摘要

Graph Convolutional Networks (GCNs) has demonstrated promising results for recommender systems, as they can effectively leverage high-order relationship. However, these methods usually encounter data sparsity issue in real-world scenarios. To address this issue, GCN-based recommendation methods employ contrastive learning to introduce self-supervised signals. Despite their effectiveness, these methods lack consideration of the significant degree disparity between head and tail nodes. This can lead to non-uniform representation distribution, which is a crucial factor for the performance of contrastive learning methods. To tackle the above issue, we propose a novel Long-tail Augmented Graph Contrastive Learning (LAGCL) method for recommendation. Specifically, we introduce a learnable long-tail augmentation approach to enhance tail nodes by supplementing predicted neighbor information, and generate contrastive views based on the resulting augmented graph. To make the data augmentation schema learnable, we design an auto drop module to generate pseudo-tail nodes from head nodes and a knowledge transfer module to reconstruct the head nodes from pseudo-tail nodes. Additionally, we employ generative adversarial networks to ensure that the distribution of the generated tail/head nodes matches that of the original tail/head nodes. Extensive experiments conducted on three benchmark datasets demonstrate the significant improvement in performance of our model over the state-of-the-arts. Further analyses demonstrate the uniformity of learned representations and the superiority of LAGCL on long-tail performance. Code is publicly available at https://github.com/im0qianqian/LAGCL
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天御雪完成签到,获得积分10
2秒前
小潘同学完成签到,获得积分10
4秒前
走着完成签到,获得积分10
4秒前
完美世界应助wwbin21c采纳,获得10
4秒前
缥缈的念真完成签到,获得积分10
4秒前
12秒前
星辰大海应助慕容飞凤采纳,获得10
12秒前
feijelly完成签到,获得积分10
13秒前
jkook发布了新的文献求助30
15秒前
ding应助CFF采纳,获得10
16秒前
乖拉完成签到,获得积分10
16秒前
tong童完成签到 ,获得积分10
16秒前
橙子完成签到,获得积分10
16秒前
nhscyhy发布了新的文献求助10
18秒前
完美世界应助桃桃采纳,获得30
20秒前
贪玩的友灵完成签到 ,获得积分10
23秒前
28秒前
jkook完成签到,获得积分10
29秒前
30秒前
30秒前
31秒前
wuxunxun2015完成签到,获得积分10
32秒前
青思发布了新的文献求助10
33秒前
炸裂的乌龟完成签到 ,获得积分10
33秒前
吃零食吃不下饭完成签到,获得积分10
34秒前
kjj完成签到 ,获得积分10
37秒前
小凯完成签到,获得积分10
38秒前
独特跳跳糖完成签到,获得积分10
40秒前
Ning完成签到 ,获得积分10
41秒前
cuin0完成签到,获得积分10
41秒前
leonzhou发布了新的文献求助10
43秒前
44秒前
BioRick完成签到 ,获得积分10
44秒前
糟糕的富应助zhuhan采纳,获得10
45秒前
xiongdi521完成签到,获得积分10
46秒前
47秒前
49秒前
rrrrrrry发布了新的文献求助10
51秒前
慕容飞凤发布了新的文献求助10
52秒前
52秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159794
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889157
捐赠科研通 2469817
什么是DOI,文献DOI怎么找? 1315087
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012