Long-tail Augmented Graph Contrastive Learning for Recommendation

计算机科学 图形 杠杆(统计) 人工智能 特征学习 推荐系统 理论计算机科学 机器学习
作者
Qian Zhao,Zhengwei Wu,Zhiqiang Zhang,Jun Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.11177
摘要

Graph Convolutional Networks (GCNs) has demonstrated promising results for recommender systems, as they can effectively leverage high-order relationship. However, these methods usually encounter data sparsity issue in real-world scenarios. To address this issue, GCN-based recommendation methods employ contrastive learning to introduce self-supervised signals. Despite their effectiveness, these methods lack consideration of the significant degree disparity between head and tail nodes. This can lead to non-uniform representation distribution, which is a crucial factor for the performance of contrastive learning methods. To tackle the above issue, we propose a novel Long-tail Augmented Graph Contrastive Learning (LAGCL) method for recommendation. Specifically, we introduce a learnable long-tail augmentation approach to enhance tail nodes by supplementing predicted neighbor information, and generate contrastive views based on the resulting augmented graph. To make the data augmentation schema learnable, we design an auto drop module to generate pseudo-tail nodes from head nodes and a knowledge transfer module to reconstruct the head nodes from pseudo-tail nodes. Additionally, we employ generative adversarial networks to ensure that the distribution of the generated tail/head nodes matches that of the original tail/head nodes. Extensive experiments conducted on three benchmark datasets demonstrate the significant improvement in performance of our model over the state-of-the-arts. Further analyses demonstrate the uniformity of learned representations and the superiority of LAGCL on long-tail performance. Code is publicly available at https://github.com/im0qianqian/LAGCL
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuii完成签到,获得积分10
1秒前
1秒前
甜馨完成签到,获得积分10
1秒前
所所应助偏偏意气用事采纳,获得10
1秒前
熊其琛完成签到,获得积分10
1秒前
大个应助dingtao采纳,获得10
2秒前
acuter发布了新的文献求助10
4秒前
科目三应助wbero采纳,获得10
4秒前
踏实的翠绿完成签到,获得积分10
4秒前
维生素完成签到,获得积分10
4秒前
Jerry完成签到,获得积分10
4秒前
甜美追命发布了新的文献求助10
4秒前
郭元强完成签到,获得积分10
5秒前
实验耗材完成签到,获得积分10
5秒前
CR7应助远慕采纳,获得10
6秒前
6秒前
完美世界应助Welcome采纳,获得10
6秒前
6秒前
7秒前
芜湖完成签到,获得积分10
8秒前
慕青应助952752907!!!!123采纳,获得10
8秒前
玉七完成签到,获得积分20
9秒前
9秒前
Owen应助gzsy采纳,获得10
10秒前
懵懂的子骞完成签到 ,获得积分10
10秒前
小丸子和zz完成签到 ,获得积分10
13秒前
Orange应助方圆几里采纳,获得10
13秒前
洋洋爱吃枣完成签到 ,获得积分10
13秒前
13秒前
gudujian870928完成签到,获得积分10
13秒前
13秒前
yi111完成签到,获得积分10
14秒前
直率的大开完成签到 ,获得积分10
14秒前
张牧之完成签到 ,获得积分10
14秒前
haha完成签到 ,获得积分10
14秒前
14秒前
田园完成签到,获得积分10
15秒前
研友_LjDyNZ完成签到,获得积分10
15秒前
16秒前
充电宝应助tp040900采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259