A novel hybrid binary whale optimization algorithm with chameleon hunting mechanism for wrapper feature selection in QSAR classification model:A drug-induced liver injury case study

特征选择 数量结构-活动关系 人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 机器学习 降维 维数之咒 二进制数 特征(语言学) 算法 数学 生物 哲学 基因 算术 生物化学 语言学
作者
Ronghe Zhou,Yong Zhang,Kai He
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121015-121015 被引量:8
标识
DOI:10.1016/j.eswa.2023.121015
摘要

High dimensionality is one of the main challenges in Quantitative Structure-Activity Relationship (QSAR) classification modeling, and feature selection as an effective dimensionality reduction method plays an important role in machine learning, particularly in fields such as chemometrics. In this paper, for feature selection in QSAR classification modeling, a hybrid whale optimization algorithm (WOA) with a chameleon hunting mechanism (HWOA-CHM) is proposed, and its binary version is used to find the best subset for wrapper feature selection in the QSAR classification model. First, a chaos weighting factor is introduced and used as a perturbation factor to increase the diversity of populations. Second, a retractable transformation strategy is designed to prevent the HWOA-CHM from falling into a local optimum. Third, the chameleon predation mechanism is introduced to improve the convergence accuracy of the HWOA-CHM. The performance of HWOA-CHM is evaluated and compared with state-of-the-art classical algorithms and well-known WOA variants. Then, a binary HWOA-CHM (BHWOA-CHM) was designed to solve the feature selection, the BHWOA-CHM is validated using the UCI machine learning repository and compared with binary version WOA, and well-known WOA variants in terms of accuracy, number of features, and time. Finally, BHWOA-CHM was used to solve the high-dimensional feature selection problem in the drug-induced liver injury classification model. It has shown excellent results in terms of feature selection compared to other methods. The proposed method effectively improves the robustness of QSAR predictions while reducing the complexity of the feature sets, demonstrating its potential for improving the accuracy of QSAR models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨晴完成签到,获得积分10
刚刚
Gorge完成签到,获得积分10
1秒前
小红完成签到,获得积分10
1秒前
求知小生完成签到 ,获得积分10
1秒前
ned4speed完成签到,获得积分10
1秒前
JasVe完成签到 ,获得积分10
1秒前
xc完成签到,获得积分10
2秒前
咕咕咕完成签到,获得积分10
2秒前
某某某完成签到,获得积分10
2秒前
未晚完成签到 ,获得积分10
2秒前
怕黑的翠绿完成签到 ,获得积分10
3秒前
4秒前
ATYS完成签到,获得积分10
5秒前
李明涵完成签到 ,获得积分10
5秒前
6秒前
吉吉完成签到 ,获得积分10
6秒前
阿呸完成签到,获得积分10
6秒前
Matrix完成签到,获得积分10
7秒前
快乐的萝莉完成签到,获得积分10
8秒前
DOGDAD完成签到,获得积分10
8秒前
Ww完成签到,获得积分10
8秒前
沉默的不言完成签到 ,获得积分10
9秒前
樊书雪完成签到,获得积分10
9秒前
满意的芸完成签到 ,获得积分10
10秒前
共享精神应助神勇的天问采纳,获得10
10秒前
美人鱼战士完成签到 ,获得积分10
10秒前
hehe发布了新的文献求助10
10秒前
front完成签到,获得积分10
10秒前
英姑应助燕海雪采纳,获得10
10秒前
医文轩完成签到,获得积分10
11秒前
小明完成签到,获得积分10
11秒前
科研包完成签到,获得积分10
12秒前
tangzanwayne发布了新的文献求助10
12秒前
复杂的凡梦完成签到,获得积分10
13秒前
dzjin完成签到,获得积分10
15秒前
温婉完成签到,获得积分10
16秒前
孤独的迎滑完成签到,获得积分10
16秒前
三木完成签到 ,获得积分10
17秒前
Bella完成签到,获得积分10
18秒前
523完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855