A novel hybrid binary whale optimization algorithm with chameleon hunting mechanism for wrapper feature selection in QSAR classification model:A drug-induced liver injury case study

特征选择 数量结构-活动关系 人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 机器学习 降维 维数之咒 二进制数 特征(语言学) 算法 数学 生物 生物化学 语言学 哲学 算术 基因
作者
Ronghe Zhou,Yong Zhang,Kai He
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121015-121015 被引量:8
标识
DOI:10.1016/j.eswa.2023.121015
摘要

High dimensionality is one of the main challenges in Quantitative Structure-Activity Relationship (QSAR) classification modeling, and feature selection as an effective dimensionality reduction method plays an important role in machine learning, particularly in fields such as chemometrics. In this paper, for feature selection in QSAR classification modeling, a hybrid whale optimization algorithm (WOA) with a chameleon hunting mechanism (HWOA-CHM) is proposed, and its binary version is used to find the best subset for wrapper feature selection in the QSAR classification model. First, a chaos weighting factor is introduced and used as a perturbation factor to increase the diversity of populations. Second, a retractable transformation strategy is designed to prevent the HWOA-CHM from falling into a local optimum. Third, the chameleon predation mechanism is introduced to improve the convergence accuracy of the HWOA-CHM. The performance of HWOA-CHM is evaluated and compared with state-of-the-art classical algorithms and well-known WOA variants. Then, a binary HWOA-CHM (BHWOA-CHM) was designed to solve the feature selection, the BHWOA-CHM is validated using the UCI machine learning repository and compared with binary version WOA, and well-known WOA variants in terms of accuracy, number of features, and time. Finally, BHWOA-CHM was used to solve the high-dimensional feature selection problem in the drug-induced liver injury classification model. It has shown excellent results in terms of feature selection compared to other methods. The proposed method effectively improves the robustness of QSAR predictions while reducing the complexity of the feature sets, demonstrating its potential for improving the accuracy of QSAR models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助踏实的师采纳,获得10
1秒前
1秒前
pu完成签到 ,获得积分10
2秒前
谦让可冥完成签到,获得积分10
2秒前
骆驼顶顶完成签到,获得积分20
2秒前
3秒前
zzx完成签到,获得积分20
3秒前
4秒前
yaxuandeng发布了新的文献求助10
4秒前
骆驼顶顶发布了新的文献求助10
5秒前
莽哥发布了新的文献求助10
5秒前
xxfsx完成签到,获得积分0
6秒前
迟迟完成签到 ,获得积分10
7秒前
7秒前
高挑的若雁完成签到 ,获得积分10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
日富一日完成签到 ,获得积分10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
七院发布了新的文献求助50
8秒前
许砚完成签到,获得积分10
8秒前
secbox完成签到,获得积分0
9秒前
10秒前
谦让可冥发布了新的文献求助10
10秒前
zzx发布了新的文献求助10
10秒前
不再方里发布了新的文献求助10
11秒前
可爱的函函应助gwh采纳,获得10
11秒前
鳗鱼诗蕊发布了新的文献求助10
12秒前
LLM完成签到,获得积分20
12秒前
ZZY发布了新的文献求助10
13秒前
酷波er应助许砚采纳,获得10
14秒前
15秒前
15秒前
yangkang完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429