A novel hybrid binary whale optimization algorithm with chameleon hunting mechanism for wrapper feature selection in QSAR classification model:A drug-induced liver injury case study

特征选择 数量结构-活动关系 人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 机器学习 降维 维数之咒 二进制数 特征(语言学) 算法 数学 生物 哲学 基因 算术 生物化学 语言学
作者
Ronghe Zhou,Yong Zhang,Kai He
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121015-121015 被引量:8
标识
DOI:10.1016/j.eswa.2023.121015
摘要

High dimensionality is one of the main challenges in Quantitative Structure-Activity Relationship (QSAR) classification modeling, and feature selection as an effective dimensionality reduction method plays an important role in machine learning, particularly in fields such as chemometrics. In this paper, for feature selection in QSAR classification modeling, a hybrid whale optimization algorithm (WOA) with a chameleon hunting mechanism (HWOA-CHM) is proposed, and its binary version is used to find the best subset for wrapper feature selection in the QSAR classification model. First, a chaos weighting factor is introduced and used as a perturbation factor to increase the diversity of populations. Second, a retractable transformation strategy is designed to prevent the HWOA-CHM from falling into a local optimum. Third, the chameleon predation mechanism is introduced to improve the convergence accuracy of the HWOA-CHM. The performance of HWOA-CHM is evaluated and compared with state-of-the-art classical algorithms and well-known WOA variants. Then, a binary HWOA-CHM (BHWOA-CHM) was designed to solve the feature selection, the BHWOA-CHM is validated using the UCI machine learning repository and compared with binary version WOA, and well-known WOA variants in terms of accuracy, number of features, and time. Finally, BHWOA-CHM was used to solve the high-dimensional feature selection problem in the drug-induced liver injury classification model. It has shown excellent results in terms of feature selection compared to other methods. The proposed method effectively improves the robustness of QSAR predictions while reducing the complexity of the feature sets, demonstrating its potential for improving the accuracy of QSAR models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cyh完成签到,获得积分10
1秒前
能干雁凡发布了新的文献求助10
2秒前
隐形曼青应助uuuu采纳,获得10
2秒前
打打应助bingsu108采纳,获得30
3秒前
600完成签到,获得积分10
3秒前
赘婿应助111采纳,获得10
3秒前
4秒前
赘婿应助小田采纳,获得10
5秒前
NaN应助hyPang采纳,获得10
6秒前
研友_VZG7GZ应助zaaaz采纳,获得30
6秒前
6秒前
6秒前
王张李高完成签到,获得积分20
6秒前
义气冥茗完成签到,获得积分10
7秒前
科研通AI6应助windy7采纳,获得10
7秒前
7秒前
Urologyzz发布了新的文献求助10
7秒前
zm发布了新的文献求助10
8秒前
oqhg完成签到,获得积分10
8秒前
DA发布了新的文献求助10
9秒前
桐桐应助陈进采纳,获得10
10秒前
Ava应助似冲采纳,获得10
10秒前
12秒前
12秒前
12秒前
mistletoe发布了新的文献求助10
12秒前
13秒前
Urologyzz完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
半山完成签到,获得积分10
15秒前
16秒前
ZeroYearN完成签到,获得积分10
16秒前
16秒前
CIXI发布了新的文献求助10
17秒前
Juli发布了新的文献求助10
17秒前
zm关闭了zm文献求助
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582755
求助须知:如何正确求助?哪些是违规求助? 4666874
关于积分的说明 14764127
捐赠科研通 4608899
什么是DOI,文献DOI怎么找? 2528885
邀请新用户注册赠送积分活动 1498196
关于科研通互助平台的介绍 1466887