A novel hybrid binary whale optimization algorithm with chameleon hunting mechanism for wrapper feature selection in QSAR classification model:A drug-induced liver injury case study

特征选择 数量结构-活动关系 人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 机器学习 降维 维数之咒 二进制数 特征(语言学) 算法 数学 生物 生物化学 语言学 哲学 算术 基因
作者
Ronghe Zhou,Yong Zhang,Kai He
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121015-121015 被引量:8
标识
DOI:10.1016/j.eswa.2023.121015
摘要

High dimensionality is one of the main challenges in Quantitative Structure-Activity Relationship (QSAR) classification modeling, and feature selection as an effective dimensionality reduction method plays an important role in machine learning, particularly in fields such as chemometrics. In this paper, for feature selection in QSAR classification modeling, a hybrid whale optimization algorithm (WOA) with a chameleon hunting mechanism (HWOA-CHM) is proposed, and its binary version is used to find the best subset for wrapper feature selection in the QSAR classification model. First, a chaos weighting factor is introduced and used as a perturbation factor to increase the diversity of populations. Second, a retractable transformation strategy is designed to prevent the HWOA-CHM from falling into a local optimum. Third, the chameleon predation mechanism is introduced to improve the convergence accuracy of the HWOA-CHM. The performance of HWOA-CHM is evaluated and compared with state-of-the-art classical algorithms and well-known WOA variants. Then, a binary HWOA-CHM (BHWOA-CHM) was designed to solve the feature selection, the BHWOA-CHM is validated using the UCI machine learning repository and compared with binary version WOA, and well-known WOA variants in terms of accuracy, number of features, and time. Finally, BHWOA-CHM was used to solve the high-dimensional feature selection problem in the drug-induced liver injury classification model. It has shown excellent results in terms of feature selection compared to other methods. The proposed method effectively improves the robustness of QSAR predictions while reducing the complexity of the feature sets, demonstrating its potential for improving the accuracy of QSAR models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助无聊的冰之采纳,获得10
刚刚
刚刚
issada完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
李正安应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得20
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
duanhuiyuan应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得30
1秒前
1秒前
duanhuiyuan应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
李正安应助科研通管家采纳,获得30
2秒前
duanhuiyuan应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
所所应助受伤凌蝶采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
xiaokezhang完成签到,获得积分20
6秒前
今后应助ACB113采纳,获得10
6秒前
9秒前
乐乐应助月恒山辉采纳,获得10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454924
求助须知:如何正确求助?哪些是违规求助? 3050185
关于积分的说明 9020562
捐赠科研通 2738826
什么是DOI,文献DOI怎么找? 1502304
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178