Imaging phenotypes predict overall survival in glioma more accurate than basic demographic and cell mutation profiles

磁共振成像 一致性 胶质瘤 医学 危险系数 比例危险模型 人口统计学的 内科学 肿瘤科 核医学 放射科 病理 置信区间 社会学 人口学 癌症研究
作者
Saima Rathore,Muhammad Aksam Iftikhar,Ahmad Chaddad,Ashish Singh,Zeeshan Gillani,Ahmed Abdulkadir
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:242: 107812-107812
标识
DOI:10.1016/j.cmpb.2023.107812
摘要

Magnetic resonance imaging (MRI), digital pathology imaging (PATH), demographics, and IDH mutation status predict overall survival (OS) in glioma. Identifying and characterizing predictive features in the different modalities may improve OS prediction accuracy.To evaluate the OS prediction accuracy of combinations of prognostic markers in glioma patients.Multi-contrast MRI, comprising T1-weighted, T1-weighted post-contrast, T2-weighted, T2 fluid-attenuated-inversion-recovery, and pathology images from glioma patients (n = 160) were retrospectively collected (1983-2008) from TCGA alongside age and sex. Phenotypic profiling of tumors was performed by quantifying the radiographic and histopathologic descriptors extracted from the delineated region-of-interest in MRI and PATH images. A Cox proportional hazard model was trained with the MRI and PATH features, IDH mutation status, and basic demographic variables (age and sex) to predict OS. The performance was evaluated in a split-train-test configuration using the concordance-index, computed between the predicted risk score and observed OS.The average age of patients was 51.2years (women: n = 77, age-range=18-84years; men: n = 83, age-range=21-80years). The median OS of the participants was 494.5 (range,3-4752), 481 (range,7-4752), and 524.5 days (range,3-2869), respectively, in complete dataset, training, and test datasets. The addition of MRI or PATH features improved prediction of OS when compared to models based on age, sex, and mutation status alone or their combination (p < 0.001). The full multi-omics model integrated MRI, PATH, clinical, and genetic profiles and predicted the OS best (c-index= 0.87).The combination of imaging, genetic, and clinical profiles leads to a more accurate prognosis than the clinical and/or mutation status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰喵完成签到 ,获得积分10
1秒前
陳某发布了新的文献求助10
2秒前
晨曦完成签到,获得积分10
2秒前
KAIDOHARA完成签到,获得积分10
2秒前
严西完成签到,获得积分10
3秒前
不爱吃韭菜完成签到 ,获得积分10
7秒前
欢喜寄风完成签到 ,获得积分20
7秒前
EmmaLin完成签到,获得积分10
7秒前
浅斟低唱发布了新的文献求助10
7秒前
白泽完成签到 ,获得积分10
10秒前
12秒前
Dsunflower完成签到 ,获得积分10
14秒前
是多多呀完成签到 ,获得积分10
14秒前
ERICLEE82完成签到,获得积分10
15秒前
HEIKU应助图图采纳,获得10
18秒前
20秒前
22秒前
科研通AI2S应助Zyccccc采纳,获得10
22秒前
乱世完成签到,获得积分10
22秒前
小田完成签到,获得积分10
23秒前
23秒前
zhuxd完成签到,获得积分10
24秒前
玄妙完成签到,获得积分20
26秒前
26秒前
小田发布了新的文献求助10
27秒前
28秒前
玄妙发布了新的文献求助30
29秒前
30秒前
L77完成签到,获得积分0
31秒前
LinHan完成签到,获得积分10
32秒前
李思超完成签到 ,获得积分10
32秒前
32秒前
阿rain完成签到,获得积分10
32秒前
图图完成签到,获得积分10
33秒前
L77发布了新的文献求助10
33秒前
blossoms完成签到 ,获得积分10
34秒前
35秒前
上官若男应助科研通管家采纳,获得10
36秒前
小马甲应助科研通管家采纳,获得10
36秒前
laber应助科研通管家采纳,获得30
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675286
求助须知:如何正确求助?哪些是违规求助? 3230131
关于积分的说明 9789054
捐赠科研通 2940956
什么是DOI,文献DOI怎么找? 1612290
邀请新用户注册赠送积分活动 761065
科研通“疑难数据库(出版商)”最低求助积分说明 736596