转导(生物物理学)
化学
ATP水解
三磷酸腺苷
信号转导
水解
细胞生物学
ATP酶
生物化学
酶
生物
作者
Zhe Sun,Yu Zhu Fan,Yi Dan Zhang,Bang Lin Li,X Dong,Qi Xiao,Nian Bing Li,Hong Qun Luo
标识
DOI:10.1016/j.bios.2023.115691
摘要
For discriminating diverse analytes and monitoring a specific chemical reaction, the emerging multi-channel "chemical nose/tongue" is challenging multi-material "chemical nose/tongue". The former contributes greatly to integrating different transduction principles from a single sensing material, avoiding the need for complex design, high cost, and tedious operation involved with the latter. Therefore, this high-order sensing puts a particular emphasis on the effects of encapsulation. Herein, the plasmonic gold nanoparticles (Au NPs) are encapsulated as a core into the fluorescent guanine monophosphate-Tb3+ infinite coordination polymer nanoparticles (GMP-Tb ICPs) to obtain a core-shell nanocomposite named Au NPs@GMP-Tb ICPs. Hence, a dual-channel "chemical tongue" based on Au NPs@GMP-Tb ICPs is present to realize high-order sensing of adenosine triphosphate (ATP)-related physiological phosphates and the monitoring of ATP hydrolysis. Considering the affinity of Tb3+ towards P-O bonds, four inorganic phosphates and three nucleotide phosphates with different phosphate group numbers and steric hindrance effect directly regulate two stimulus responses (fluorescence intensity and UV-vis absorbance) of Au NPs@GMP-Tb ICPs. Robust statistical methods, such as linear discriminant analysis and hierarchical cluster analysis, are used to recognize each phosphate by the developed sensor array either in the aqueous solution or in complex media such as serum, together with efficiently monitored ATP hydrolysis at different intervals. These findings and blind test clarify that the designed "chemical tongue" guarantees interference resistance and strengthens analytical capacity, together with offering valuable insight into "lab-on-a-nanoparticle" development for monitoring specific chemical reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI